Properties

Label 2888.2.a.v.1.2
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-6,0,-2,0,-2,0,2,0,12,0,-6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.10564000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 14x^{5} + 24x^{4} - 28x^{3} - 21x^{2} + 16x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.32561\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.32561 q^{3} -4.27353 q^{5} -4.02384 q^{7} +2.40845 q^{9} +3.62806 q^{11} -0.948800 q^{13} +9.93856 q^{15} -1.99441 q^{17} +9.35787 q^{21} +0.296119 q^{23} +13.2631 q^{25} +1.37571 q^{27} +7.16272 q^{29} -3.23298 q^{31} -8.43745 q^{33} +17.1960 q^{35} -3.01334 q^{37} +2.20654 q^{39} -3.79386 q^{41} +6.33165 q^{43} -10.2926 q^{45} +7.37034 q^{47} +9.19127 q^{49} +4.63821 q^{51} -12.5194 q^{53} -15.5046 q^{55} +0.585487 q^{59} +13.2370 q^{61} -9.69121 q^{63} +4.05473 q^{65} -0.121873 q^{67} -0.688657 q^{69} +2.67913 q^{71} +0.257480 q^{73} -30.8447 q^{75} -14.5987 q^{77} +10.4254 q^{79} -10.4247 q^{81} -0.107899 q^{83} +8.52317 q^{85} -16.6577 q^{87} -14.1086 q^{89} +3.81782 q^{91} +7.51865 q^{93} -7.07291 q^{97} +8.73800 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{3} - 2 q^{5} - 2 q^{7} + 2 q^{9} + 12 q^{11} - 6 q^{13} - 10 q^{17} + 4 q^{21} - 12 q^{23} + 2 q^{25} - 12 q^{27} - 18 q^{29} - 14 q^{31} - 40 q^{33} + 18 q^{35} - 16 q^{37} + 28 q^{39} - 12 q^{41}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.32561 −1.34269 −0.671345 0.741145i \(-0.734283\pi\)
−0.671345 + 0.741145i \(0.734283\pi\)
\(4\) 0 0
\(5\) −4.27353 −1.91118 −0.955591 0.294697i \(-0.904781\pi\)
−0.955591 + 0.294697i \(0.904781\pi\)
\(6\) 0 0
\(7\) −4.02384 −1.52087 −0.760434 0.649415i \(-0.775014\pi\)
−0.760434 + 0.649415i \(0.775014\pi\)
\(8\) 0 0
\(9\) 2.40845 0.802817
\(10\) 0 0
\(11\) 3.62806 1.09390 0.546951 0.837165i \(-0.315788\pi\)
0.546951 + 0.837165i \(0.315788\pi\)
\(12\) 0 0
\(13\) −0.948800 −0.263150 −0.131575 0.991306i \(-0.542003\pi\)
−0.131575 + 0.991306i \(0.542003\pi\)
\(14\) 0 0
\(15\) 9.93856 2.56612
\(16\) 0 0
\(17\) −1.99441 −0.483715 −0.241858 0.970312i \(-0.577757\pi\)
−0.241858 + 0.970312i \(0.577757\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 9.35787 2.04205
\(22\) 0 0
\(23\) 0.296119 0.0617451 0.0308725 0.999523i \(-0.490171\pi\)
0.0308725 + 0.999523i \(0.490171\pi\)
\(24\) 0 0
\(25\) 13.2631 2.65261
\(26\) 0 0
\(27\) 1.37571 0.264756
\(28\) 0 0
\(29\) 7.16272 1.33008 0.665042 0.746806i \(-0.268414\pi\)
0.665042 + 0.746806i \(0.268414\pi\)
\(30\) 0 0
\(31\) −3.23298 −0.580661 −0.290330 0.956926i \(-0.593765\pi\)
−0.290330 + 0.956926i \(0.593765\pi\)
\(32\) 0 0
\(33\) −8.43745 −1.46877
\(34\) 0 0
\(35\) 17.1960 2.90665
\(36\) 0 0
\(37\) −3.01334 −0.495390 −0.247695 0.968838i \(-0.579673\pi\)
−0.247695 + 0.968838i \(0.579673\pi\)
\(38\) 0 0
\(39\) 2.20654 0.353329
\(40\) 0 0
\(41\) −3.79386 −0.592501 −0.296250 0.955110i \(-0.595736\pi\)
−0.296250 + 0.955110i \(0.595736\pi\)
\(42\) 0 0
\(43\) 6.33165 0.965567 0.482784 0.875740i \(-0.339626\pi\)
0.482784 + 0.875740i \(0.339626\pi\)
\(44\) 0 0
\(45\) −10.2926 −1.53433
\(46\) 0 0
\(47\) 7.37034 1.07507 0.537537 0.843240i \(-0.319355\pi\)
0.537537 + 0.843240i \(0.319355\pi\)
\(48\) 0 0
\(49\) 9.19127 1.31304
\(50\) 0 0
\(51\) 4.63821 0.649480
\(52\) 0 0
\(53\) −12.5194 −1.71967 −0.859833 0.510575i \(-0.829432\pi\)
−0.859833 + 0.510575i \(0.829432\pi\)
\(54\) 0 0
\(55\) −15.5046 −2.09064
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.585487 0.0762239 0.0381120 0.999273i \(-0.487866\pi\)
0.0381120 + 0.999273i \(0.487866\pi\)
\(60\) 0 0
\(61\) 13.2370 1.69483 0.847414 0.530933i \(-0.178159\pi\)
0.847414 + 0.530933i \(0.178159\pi\)
\(62\) 0 0
\(63\) −9.69121 −1.22098
\(64\) 0 0
\(65\) 4.05473 0.502927
\(66\) 0 0
\(67\) −0.121873 −0.0148892 −0.00744459 0.999972i \(-0.502370\pi\)
−0.00744459 + 0.999972i \(0.502370\pi\)
\(68\) 0 0
\(69\) −0.688657 −0.0829045
\(70\) 0 0
\(71\) 2.67913 0.317954 0.158977 0.987282i \(-0.449180\pi\)
0.158977 + 0.987282i \(0.449180\pi\)
\(72\) 0 0
\(73\) 0.257480 0.0301357 0.0150679 0.999886i \(-0.495204\pi\)
0.0150679 + 0.999886i \(0.495204\pi\)
\(74\) 0 0
\(75\) −30.8447 −3.56164
\(76\) 0 0
\(77\) −14.5987 −1.66368
\(78\) 0 0
\(79\) 10.4254 1.17295 0.586477 0.809966i \(-0.300514\pi\)
0.586477 + 0.809966i \(0.300514\pi\)
\(80\) 0 0
\(81\) −10.4247 −1.15830
\(82\) 0 0
\(83\) −0.107899 −0.0118434 −0.00592171 0.999982i \(-0.501885\pi\)
−0.00592171 + 0.999982i \(0.501885\pi\)
\(84\) 0 0
\(85\) 8.52317 0.924468
\(86\) 0 0
\(87\) −16.6577 −1.78589
\(88\) 0 0
\(89\) −14.1086 −1.49551 −0.747754 0.663976i \(-0.768868\pi\)
−0.747754 + 0.663976i \(0.768868\pi\)
\(90\) 0 0
\(91\) 3.81782 0.400216
\(92\) 0 0
\(93\) 7.51865 0.779647
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −7.07291 −0.718146 −0.359073 0.933310i \(-0.616907\pi\)
−0.359073 + 0.933310i \(0.616907\pi\)
\(98\) 0 0
\(99\) 8.73800 0.878202
\(100\) 0 0
\(101\) −3.50600 −0.348860 −0.174430 0.984670i \(-0.555808\pi\)
−0.174430 + 0.984670i \(0.555808\pi\)
\(102\) 0 0
\(103\) 0.930210 0.0916563 0.0458281 0.998949i \(-0.485407\pi\)
0.0458281 + 0.998949i \(0.485407\pi\)
\(104\) 0 0
\(105\) −39.9911 −3.90274
\(106\) 0 0
\(107\) 12.3129 1.19033 0.595167 0.803602i \(-0.297086\pi\)
0.595167 + 0.803602i \(0.297086\pi\)
\(108\) 0 0
\(109\) −11.3763 −1.08965 −0.544826 0.838549i \(-0.683404\pi\)
−0.544826 + 0.838549i \(0.683404\pi\)
\(110\) 0 0
\(111\) 7.00785 0.665155
\(112\) 0 0
\(113\) 0.181387 0.0170635 0.00853175 0.999964i \(-0.497284\pi\)
0.00853175 + 0.999964i \(0.497284\pi\)
\(114\) 0 0
\(115\) −1.26547 −0.118006
\(116\) 0 0
\(117\) −2.28514 −0.211261
\(118\) 0 0
\(119\) 8.02518 0.735667
\(120\) 0 0
\(121\) 2.16283 0.196621
\(122\) 0 0
\(123\) 8.82302 0.795545
\(124\) 0 0
\(125\) −35.3125 −3.15844
\(126\) 0 0
\(127\) −13.9908 −1.24148 −0.620742 0.784015i \(-0.713169\pi\)
−0.620742 + 0.784015i \(0.713169\pi\)
\(128\) 0 0
\(129\) −14.7249 −1.29646
\(130\) 0 0
\(131\) 9.04103 0.789919 0.394959 0.918699i \(-0.370759\pi\)
0.394959 + 0.918699i \(0.370759\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −5.87915 −0.505997
\(136\) 0 0
\(137\) 4.99341 0.426616 0.213308 0.976985i \(-0.431576\pi\)
0.213308 + 0.976985i \(0.431576\pi\)
\(138\) 0 0
\(139\) 1.12537 0.0954525 0.0477263 0.998860i \(-0.484802\pi\)
0.0477263 + 0.998860i \(0.484802\pi\)
\(140\) 0 0
\(141\) −17.1405 −1.44349
\(142\) 0 0
\(143\) −3.44231 −0.287860
\(144\) 0 0
\(145\) −30.6101 −2.54203
\(146\) 0 0
\(147\) −21.3753 −1.76300
\(148\) 0 0
\(149\) 8.98883 0.736393 0.368197 0.929748i \(-0.379975\pi\)
0.368197 + 0.929748i \(0.379975\pi\)
\(150\) 0 0
\(151\) −3.60432 −0.293315 −0.146658 0.989187i \(-0.546852\pi\)
−0.146658 + 0.989187i \(0.546852\pi\)
\(152\) 0 0
\(153\) −4.80344 −0.388335
\(154\) 0 0
\(155\) 13.8163 1.10975
\(156\) 0 0
\(157\) −23.2636 −1.85663 −0.928317 0.371788i \(-0.878745\pi\)
−0.928317 + 0.371788i \(0.878745\pi\)
\(158\) 0 0
\(159\) 29.1151 2.30898
\(160\) 0 0
\(161\) −1.19153 −0.0939061
\(162\) 0 0
\(163\) 13.2233 1.03573 0.517864 0.855463i \(-0.326727\pi\)
0.517864 + 0.855463i \(0.326727\pi\)
\(164\) 0 0
\(165\) 36.0577 2.80709
\(166\) 0 0
\(167\) −25.4345 −1.96818 −0.984089 0.177675i \(-0.943143\pi\)
−0.984089 + 0.177675i \(0.943143\pi\)
\(168\) 0 0
\(169\) −12.0998 −0.930752
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.0024 0.988552 0.494276 0.869305i \(-0.335433\pi\)
0.494276 + 0.869305i \(0.335433\pi\)
\(174\) 0 0
\(175\) −53.3684 −4.03427
\(176\) 0 0
\(177\) −1.36161 −0.102345
\(178\) 0 0
\(179\) 15.4470 1.15456 0.577281 0.816546i \(-0.304114\pi\)
0.577281 + 0.816546i \(0.304114\pi\)
\(180\) 0 0
\(181\) −5.07540 −0.377252 −0.188626 0.982049i \(-0.560403\pi\)
−0.188626 + 0.982049i \(0.560403\pi\)
\(182\) 0 0
\(183\) −30.7841 −2.27563
\(184\) 0 0
\(185\) 12.8776 0.946780
\(186\) 0 0
\(187\) −7.23584 −0.529137
\(188\) 0 0
\(189\) −5.53565 −0.402659
\(190\) 0 0
\(191\) 14.5264 1.05109 0.525545 0.850766i \(-0.323861\pi\)
0.525545 + 0.850766i \(0.323861\pi\)
\(192\) 0 0
\(193\) −2.63076 −0.189366 −0.0946830 0.995507i \(-0.530184\pi\)
−0.0946830 + 0.995507i \(0.530184\pi\)
\(194\) 0 0
\(195\) −9.42971 −0.675275
\(196\) 0 0
\(197\) 13.3729 0.952777 0.476388 0.879235i \(-0.341946\pi\)
0.476388 + 0.879235i \(0.341946\pi\)
\(198\) 0 0
\(199\) 8.99470 0.637617 0.318809 0.947819i \(-0.396717\pi\)
0.318809 + 0.947819i \(0.396717\pi\)
\(200\) 0 0
\(201\) 0.283429 0.0199915
\(202\) 0 0
\(203\) −28.8216 −2.02288
\(204\) 0 0
\(205\) 16.2132 1.13238
\(206\) 0 0
\(207\) 0.713188 0.0495700
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 23.3837 1.60980 0.804899 0.593412i \(-0.202219\pi\)
0.804899 + 0.593412i \(0.202219\pi\)
\(212\) 0 0
\(213\) −6.23059 −0.426913
\(214\) 0 0
\(215\) −27.0585 −1.84537
\(216\) 0 0
\(217\) 13.0090 0.883108
\(218\) 0 0
\(219\) −0.598797 −0.0404629
\(220\) 0 0
\(221\) 1.89230 0.127290
\(222\) 0 0
\(223\) −17.1459 −1.14817 −0.574087 0.818794i \(-0.694643\pi\)
−0.574087 + 0.818794i \(0.694643\pi\)
\(224\) 0 0
\(225\) 31.9434 2.12956
\(226\) 0 0
\(227\) 18.6281 1.23639 0.618194 0.786025i \(-0.287865\pi\)
0.618194 + 0.786025i \(0.287865\pi\)
\(228\) 0 0
\(229\) 21.2555 1.40461 0.702303 0.711878i \(-0.252155\pi\)
0.702303 + 0.711878i \(0.252155\pi\)
\(230\) 0 0
\(231\) 33.9509 2.23381
\(232\) 0 0
\(233\) 1.08780 0.0712643 0.0356321 0.999365i \(-0.488656\pi\)
0.0356321 + 0.999365i \(0.488656\pi\)
\(234\) 0 0
\(235\) −31.4974 −2.05466
\(236\) 0 0
\(237\) −24.2455 −1.57491
\(238\) 0 0
\(239\) −24.5547 −1.58831 −0.794157 0.607713i \(-0.792087\pi\)
−0.794157 + 0.607713i \(0.792087\pi\)
\(240\) 0 0
\(241\) 4.56323 0.293944 0.146972 0.989141i \(-0.453047\pi\)
0.146972 + 0.989141i \(0.453047\pi\)
\(242\) 0 0
\(243\) 20.1167 1.29048
\(244\) 0 0
\(245\) −39.2792 −2.50945
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0.250930 0.0159020
\(250\) 0 0
\(251\) 26.6609 1.68282 0.841410 0.540397i \(-0.181726\pi\)
0.841410 + 0.540397i \(0.181726\pi\)
\(252\) 0 0
\(253\) 1.07434 0.0675431
\(254\) 0 0
\(255\) −19.8216 −1.24127
\(256\) 0 0
\(257\) 14.1879 0.885016 0.442508 0.896765i \(-0.354089\pi\)
0.442508 + 0.896765i \(0.354089\pi\)
\(258\) 0 0
\(259\) 12.1252 0.753423
\(260\) 0 0
\(261\) 17.2510 1.06781
\(262\) 0 0
\(263\) −21.2547 −1.31062 −0.655311 0.755359i \(-0.727463\pi\)
−0.655311 + 0.755359i \(0.727463\pi\)
\(264\) 0 0
\(265\) 53.5019 3.28659
\(266\) 0 0
\(267\) 32.8110 2.00800
\(268\) 0 0
\(269\) 1.51611 0.0924391 0.0462195 0.998931i \(-0.485283\pi\)
0.0462195 + 0.998931i \(0.485283\pi\)
\(270\) 0 0
\(271\) −5.92400 −0.359857 −0.179929 0.983680i \(-0.557587\pi\)
−0.179929 + 0.983680i \(0.557587\pi\)
\(272\) 0 0
\(273\) −8.87875 −0.537366
\(274\) 0 0
\(275\) 48.1192 2.90170
\(276\) 0 0
\(277\) −7.83954 −0.471032 −0.235516 0.971870i \(-0.575678\pi\)
−0.235516 + 0.971870i \(0.575678\pi\)
\(278\) 0 0
\(279\) −7.78648 −0.466164
\(280\) 0 0
\(281\) 16.3122 0.973106 0.486553 0.873651i \(-0.338254\pi\)
0.486553 + 0.873651i \(0.338254\pi\)
\(282\) 0 0
\(283\) 9.14656 0.543707 0.271853 0.962339i \(-0.412363\pi\)
0.271853 + 0.962339i \(0.412363\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.2659 0.901115
\(288\) 0 0
\(289\) −13.0223 −0.766019
\(290\) 0 0
\(291\) 16.4488 0.964247
\(292\) 0 0
\(293\) −9.67814 −0.565403 −0.282701 0.959208i \(-0.591231\pi\)
−0.282701 + 0.959208i \(0.591231\pi\)
\(294\) 0 0
\(295\) −2.50210 −0.145678
\(296\) 0 0
\(297\) 4.99117 0.289617
\(298\) 0 0
\(299\) −0.280958 −0.0162482
\(300\) 0 0
\(301\) −25.4775 −1.46850
\(302\) 0 0
\(303\) 8.15358 0.468411
\(304\) 0 0
\(305\) −56.5688 −3.23912
\(306\) 0 0
\(307\) −12.3439 −0.704502 −0.352251 0.935906i \(-0.614584\pi\)
−0.352251 + 0.935906i \(0.614584\pi\)
\(308\) 0 0
\(309\) −2.16330 −0.123066
\(310\) 0 0
\(311\) −5.61077 −0.318158 −0.159079 0.987266i \(-0.550852\pi\)
−0.159079 + 0.987266i \(0.550852\pi\)
\(312\) 0 0
\(313\) 4.44001 0.250964 0.125482 0.992096i \(-0.459952\pi\)
0.125482 + 0.992096i \(0.459952\pi\)
\(314\) 0 0
\(315\) 41.4157 2.33351
\(316\) 0 0
\(317\) 22.6881 1.27429 0.637146 0.770743i \(-0.280115\pi\)
0.637146 + 0.770743i \(0.280115\pi\)
\(318\) 0 0
\(319\) 25.9868 1.45498
\(320\) 0 0
\(321\) −28.6350 −1.59825
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −12.5840 −0.698035
\(326\) 0 0
\(327\) 26.4568 1.46306
\(328\) 0 0
\(329\) −29.6570 −1.63505
\(330\) 0 0
\(331\) −24.7799 −1.36202 −0.681012 0.732272i \(-0.738460\pi\)
−0.681012 + 0.732272i \(0.738460\pi\)
\(332\) 0 0
\(333\) −7.25748 −0.397707
\(334\) 0 0
\(335\) 0.520829 0.0284559
\(336\) 0 0
\(337\) −23.4232 −1.27594 −0.637971 0.770061i \(-0.720226\pi\)
−0.637971 + 0.770061i \(0.720226\pi\)
\(338\) 0 0
\(339\) −0.421836 −0.0229110
\(340\) 0 0
\(341\) −11.7295 −0.635186
\(342\) 0 0
\(343\) −8.81730 −0.476090
\(344\) 0 0
\(345\) 2.94300 0.158446
\(346\) 0 0
\(347\) −5.17571 −0.277847 −0.138923 0.990303i \(-0.544364\pi\)
−0.138923 + 0.990303i \(0.544364\pi\)
\(348\) 0 0
\(349\) −25.1202 −1.34465 −0.672326 0.740255i \(-0.734705\pi\)
−0.672326 + 0.740255i \(0.734705\pi\)
\(350\) 0 0
\(351\) −1.30528 −0.0696705
\(352\) 0 0
\(353\) 23.5256 1.25214 0.626072 0.779766i \(-0.284662\pi\)
0.626072 + 0.779766i \(0.284662\pi\)
\(354\) 0 0
\(355\) −11.4493 −0.607667
\(356\) 0 0
\(357\) −18.6634 −0.987773
\(358\) 0 0
\(359\) 18.3668 0.969363 0.484682 0.874691i \(-0.338935\pi\)
0.484682 + 0.874691i \(0.338935\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −5.02989 −0.264001
\(364\) 0 0
\(365\) −1.10035 −0.0575948
\(366\) 0 0
\(367\) 22.2718 1.16258 0.581289 0.813697i \(-0.302549\pi\)
0.581289 + 0.813697i \(0.302549\pi\)
\(368\) 0 0
\(369\) −9.13731 −0.475670
\(370\) 0 0
\(371\) 50.3759 2.61538
\(372\) 0 0
\(373\) −11.0997 −0.574719 −0.287359 0.957823i \(-0.592777\pi\)
−0.287359 + 0.957823i \(0.592777\pi\)
\(374\) 0 0
\(375\) 82.1230 4.24081
\(376\) 0 0
\(377\) −6.79599 −0.350011
\(378\) 0 0
\(379\) −37.1619 −1.90888 −0.954439 0.298405i \(-0.903545\pi\)
−0.954439 + 0.298405i \(0.903545\pi\)
\(380\) 0 0
\(381\) 32.5372 1.66693
\(382\) 0 0
\(383\) −22.7960 −1.16482 −0.582411 0.812894i \(-0.697891\pi\)
−0.582411 + 0.812894i \(0.697891\pi\)
\(384\) 0 0
\(385\) 62.3881 3.17959
\(386\) 0 0
\(387\) 15.2495 0.775174
\(388\) 0 0
\(389\) −14.5075 −0.735558 −0.367779 0.929913i \(-0.619882\pi\)
−0.367779 + 0.929913i \(0.619882\pi\)
\(390\) 0 0
\(391\) −0.590583 −0.0298670
\(392\) 0 0
\(393\) −21.0259 −1.06062
\(394\) 0 0
\(395\) −44.5535 −2.24173
\(396\) 0 0
\(397\) −19.3834 −0.972823 −0.486411 0.873730i \(-0.661694\pi\)
−0.486411 + 0.873730i \(0.661694\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.89215 0.144427 0.0722135 0.997389i \(-0.476994\pi\)
0.0722135 + 0.997389i \(0.476994\pi\)
\(402\) 0 0
\(403\) 3.06745 0.152801
\(404\) 0 0
\(405\) 44.5504 2.21373
\(406\) 0 0
\(407\) −10.9326 −0.541908
\(408\) 0 0
\(409\) 2.93892 0.145320 0.0726601 0.997357i \(-0.476851\pi\)
0.0726601 + 0.997357i \(0.476851\pi\)
\(410\) 0 0
\(411\) −11.6127 −0.572813
\(412\) 0 0
\(413\) −2.35590 −0.115926
\(414\) 0 0
\(415\) 0.461108 0.0226349
\(416\) 0 0
\(417\) −2.61717 −0.128163
\(418\) 0 0
\(419\) 8.98293 0.438845 0.219423 0.975630i \(-0.429583\pi\)
0.219423 + 0.975630i \(0.429583\pi\)
\(420\) 0 0
\(421\) −3.98224 −0.194083 −0.0970413 0.995280i \(-0.530938\pi\)
−0.0970413 + 0.995280i \(0.530938\pi\)
\(422\) 0 0
\(423\) 17.7511 0.863088
\(424\) 0 0
\(425\) −26.4520 −1.28311
\(426\) 0 0
\(427\) −53.2636 −2.57761
\(428\) 0 0
\(429\) 8.00545 0.386507
\(430\) 0 0
\(431\) 16.2162 0.781106 0.390553 0.920581i \(-0.372284\pi\)
0.390553 + 0.920581i \(0.372284\pi\)
\(432\) 0 0
\(433\) −30.9590 −1.48780 −0.743898 0.668294i \(-0.767025\pi\)
−0.743898 + 0.668294i \(0.767025\pi\)
\(434\) 0 0
\(435\) 71.1871 3.41316
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −20.5939 −0.982892 −0.491446 0.870908i \(-0.663532\pi\)
−0.491446 + 0.870908i \(0.663532\pi\)
\(440\) 0 0
\(441\) 22.1367 1.05413
\(442\) 0 0
\(443\) 32.5072 1.54446 0.772231 0.635342i \(-0.219141\pi\)
0.772231 + 0.635342i \(0.219141\pi\)
\(444\) 0 0
\(445\) 60.2935 2.85819
\(446\) 0 0
\(447\) −20.9045 −0.988748
\(448\) 0 0
\(449\) 26.4823 1.24978 0.624888 0.780714i \(-0.285145\pi\)
0.624888 + 0.780714i \(0.285145\pi\)
\(450\) 0 0
\(451\) −13.7643 −0.648138
\(452\) 0 0
\(453\) 8.38222 0.393831
\(454\) 0 0
\(455\) −16.3156 −0.764886
\(456\) 0 0
\(457\) −21.1946 −0.991440 −0.495720 0.868483i \(-0.665096\pi\)
−0.495720 + 0.868483i \(0.665096\pi\)
\(458\) 0 0
\(459\) −2.74374 −0.128067
\(460\) 0 0
\(461\) −23.6136 −1.09979 −0.549897 0.835233i \(-0.685333\pi\)
−0.549897 + 0.835233i \(0.685333\pi\)
\(462\) 0 0
\(463\) 5.12258 0.238067 0.119033 0.992890i \(-0.462020\pi\)
0.119033 + 0.992890i \(0.462020\pi\)
\(464\) 0 0
\(465\) −32.1312 −1.49005
\(466\) 0 0
\(467\) −11.8537 −0.548522 −0.274261 0.961655i \(-0.588433\pi\)
−0.274261 + 0.961655i \(0.588433\pi\)
\(468\) 0 0
\(469\) 0.490398 0.0226445
\(470\) 0 0
\(471\) 54.1019 2.49289
\(472\) 0 0
\(473\) 22.9716 1.05624
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −30.1522 −1.38058
\(478\) 0 0
\(479\) −12.2856 −0.561343 −0.280671 0.959804i \(-0.590557\pi\)
−0.280671 + 0.959804i \(0.590557\pi\)
\(480\) 0 0
\(481\) 2.85906 0.130362
\(482\) 0 0
\(483\) 2.77104 0.126087
\(484\) 0 0
\(485\) 30.2263 1.37251
\(486\) 0 0
\(487\) −1.25354 −0.0568032 −0.0284016 0.999597i \(-0.509042\pi\)
−0.0284016 + 0.999597i \(0.509042\pi\)
\(488\) 0 0
\(489\) −30.7522 −1.39066
\(490\) 0 0
\(491\) −22.7795 −1.02803 −0.514013 0.857783i \(-0.671842\pi\)
−0.514013 + 0.857783i \(0.671842\pi\)
\(492\) 0 0
\(493\) −14.2854 −0.643382
\(494\) 0 0
\(495\) −37.3421 −1.67840
\(496\) 0 0
\(497\) −10.7804 −0.483565
\(498\) 0 0
\(499\) 33.5405 1.50148 0.750740 0.660598i \(-0.229697\pi\)
0.750740 + 0.660598i \(0.229697\pi\)
\(500\) 0 0
\(501\) 59.1506 2.64265
\(502\) 0 0
\(503\) −12.0392 −0.536802 −0.268401 0.963307i \(-0.586495\pi\)
−0.268401 + 0.963307i \(0.586495\pi\)
\(504\) 0 0
\(505\) 14.9830 0.666735
\(506\) 0 0
\(507\) 28.1393 1.24971
\(508\) 0 0
\(509\) 21.2283 0.940928 0.470464 0.882419i \(-0.344087\pi\)
0.470464 + 0.882419i \(0.344087\pi\)
\(510\) 0 0
\(511\) −1.03606 −0.0458325
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.97528 −0.175172
\(516\) 0 0
\(517\) 26.7400 1.17603
\(518\) 0 0
\(519\) −30.2384 −1.32732
\(520\) 0 0
\(521\) 34.6456 1.51785 0.758925 0.651178i \(-0.225725\pi\)
0.758925 + 0.651178i \(0.225725\pi\)
\(522\) 0 0
\(523\) −27.4504 −1.20032 −0.600160 0.799880i \(-0.704897\pi\)
−0.600160 + 0.799880i \(0.704897\pi\)
\(524\) 0 0
\(525\) 124.114 5.41678
\(526\) 0 0
\(527\) 6.44789 0.280874
\(528\) 0 0
\(529\) −22.9123 −0.996188
\(530\) 0 0
\(531\) 1.41012 0.0611938
\(532\) 0 0
\(533\) 3.59961 0.155917
\(534\) 0 0
\(535\) −52.6196 −2.27494
\(536\) 0 0
\(537\) −35.9236 −1.55022
\(538\) 0 0
\(539\) 33.3465 1.43633
\(540\) 0 0
\(541\) 34.5821 1.48680 0.743400 0.668847i \(-0.233212\pi\)
0.743400 + 0.668847i \(0.233212\pi\)
\(542\) 0 0
\(543\) 11.8034 0.506532
\(544\) 0 0
\(545\) 48.6170 2.08252
\(546\) 0 0
\(547\) −30.4137 −1.30040 −0.650198 0.759765i \(-0.725314\pi\)
−0.650198 + 0.759765i \(0.725314\pi\)
\(548\) 0 0
\(549\) 31.8807 1.36064
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −41.9503 −1.78391
\(554\) 0 0
\(555\) −29.9483 −1.27123
\(556\) 0 0
\(557\) −6.41431 −0.271783 −0.135892 0.990724i \(-0.543390\pi\)
−0.135892 + 0.990724i \(0.543390\pi\)
\(558\) 0 0
\(559\) −6.00747 −0.254089
\(560\) 0 0
\(561\) 16.8277 0.710467
\(562\) 0 0
\(563\) 24.4242 1.02936 0.514678 0.857384i \(-0.327911\pi\)
0.514678 + 0.857384i \(0.327911\pi\)
\(564\) 0 0
\(565\) −0.775165 −0.0326114
\(566\) 0 0
\(567\) 41.9474 1.76162
\(568\) 0 0
\(569\) −9.67293 −0.405510 −0.202755 0.979229i \(-0.564990\pi\)
−0.202755 + 0.979229i \(0.564990\pi\)
\(570\) 0 0
\(571\) −42.0563 −1.76000 −0.880001 0.474971i \(-0.842458\pi\)
−0.880001 + 0.474971i \(0.842458\pi\)
\(572\) 0 0
\(573\) −33.7826 −1.41129
\(574\) 0 0
\(575\) 3.92745 0.163786
\(576\) 0 0
\(577\) −6.30242 −0.262373 −0.131187 0.991358i \(-0.541879\pi\)
−0.131187 + 0.991358i \(0.541879\pi\)
\(578\) 0 0
\(579\) 6.11811 0.254260
\(580\) 0 0
\(581\) 0.434167 0.0180123
\(582\) 0 0
\(583\) −45.4210 −1.88115
\(584\) 0 0
\(585\) 9.76561 0.403758
\(586\) 0 0
\(587\) −7.59256 −0.313379 −0.156689 0.987648i \(-0.550082\pi\)
−0.156689 + 0.987648i \(0.550082\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −31.1000 −1.27928
\(592\) 0 0
\(593\) −17.6290 −0.723938 −0.361969 0.932190i \(-0.617895\pi\)
−0.361969 + 0.932190i \(0.617895\pi\)
\(594\) 0 0
\(595\) −34.2959 −1.40599
\(596\) 0 0
\(597\) −20.9181 −0.856122
\(598\) 0 0
\(599\) 20.9163 0.854617 0.427308 0.904106i \(-0.359462\pi\)
0.427308 + 0.904106i \(0.359462\pi\)
\(600\) 0 0
\(601\) 7.13900 0.291206 0.145603 0.989343i \(-0.453488\pi\)
0.145603 + 0.989343i \(0.453488\pi\)
\(602\) 0 0
\(603\) −0.293525 −0.0119533
\(604\) 0 0
\(605\) −9.24292 −0.375778
\(606\) 0 0
\(607\) 3.79992 0.154234 0.0771169 0.997022i \(-0.475429\pi\)
0.0771169 + 0.997022i \(0.475429\pi\)
\(608\) 0 0
\(609\) 67.0277 2.71610
\(610\) 0 0
\(611\) −6.99298 −0.282906
\(612\) 0 0
\(613\) 17.8061 0.719183 0.359591 0.933110i \(-0.382916\pi\)
0.359591 + 0.933110i \(0.382916\pi\)
\(614\) 0 0
\(615\) −37.7055 −1.52043
\(616\) 0 0
\(617\) −29.9942 −1.20752 −0.603761 0.797165i \(-0.706332\pi\)
−0.603761 + 0.797165i \(0.706332\pi\)
\(618\) 0 0
\(619\) 11.8948 0.478091 0.239046 0.971008i \(-0.423165\pi\)
0.239046 + 0.971008i \(0.423165\pi\)
\(620\) 0 0
\(621\) 0.407375 0.0163474
\(622\) 0 0
\(623\) 56.7707 2.27447
\(624\) 0 0
\(625\) 84.5937 3.38375
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.00983 0.239628
\(630\) 0 0
\(631\) −35.2253 −1.40230 −0.701149 0.713015i \(-0.747329\pi\)
−0.701149 + 0.713015i \(0.747329\pi\)
\(632\) 0 0
\(633\) −54.3812 −2.16146
\(634\) 0 0
\(635\) 59.7902 2.37270
\(636\) 0 0
\(637\) −8.72068 −0.345526
\(638\) 0 0
\(639\) 6.45254 0.255258
\(640\) 0 0
\(641\) 1.83803 0.0725978 0.0362989 0.999341i \(-0.488443\pi\)
0.0362989 + 0.999341i \(0.488443\pi\)
\(642\) 0 0
\(643\) 4.05845 0.160050 0.0800248 0.996793i \(-0.474500\pi\)
0.0800248 + 0.996793i \(0.474500\pi\)
\(644\) 0 0
\(645\) 62.9274 2.47777
\(646\) 0 0
\(647\) 7.12263 0.280019 0.140010 0.990150i \(-0.455287\pi\)
0.140010 + 0.990150i \(0.455287\pi\)
\(648\) 0 0
\(649\) 2.12418 0.0833815
\(650\) 0 0
\(651\) −30.2538 −1.18574
\(652\) 0 0
\(653\) 30.8846 1.20861 0.604305 0.796753i \(-0.293451\pi\)
0.604305 + 0.796753i \(0.293451\pi\)
\(654\) 0 0
\(655\) −38.6371 −1.50968
\(656\) 0 0
\(657\) 0.620127 0.0241935
\(658\) 0 0
\(659\) −29.0575 −1.13192 −0.565960 0.824433i \(-0.691494\pi\)
−0.565960 + 0.824433i \(0.691494\pi\)
\(660\) 0 0
\(661\) −37.9619 −1.47655 −0.738273 0.674501i \(-0.764359\pi\)
−0.738273 + 0.674501i \(0.764359\pi\)
\(662\) 0 0
\(663\) −4.40074 −0.170911
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.12102 0.0821261
\(668\) 0 0
\(669\) 39.8746 1.54164
\(670\) 0 0
\(671\) 48.0247 1.85397
\(672\) 0 0
\(673\) 29.0978 1.12164 0.560819 0.827938i \(-0.310486\pi\)
0.560819 + 0.827938i \(0.310486\pi\)
\(674\) 0 0
\(675\) 18.2462 0.702296
\(676\) 0 0
\(677\) −35.0103 −1.34555 −0.672777 0.739846i \(-0.734899\pi\)
−0.672777 + 0.739846i \(0.734899\pi\)
\(678\) 0 0
\(679\) 28.4603 1.09220
\(680\) 0 0
\(681\) −43.3216 −1.66009
\(682\) 0 0
\(683\) 29.5189 1.12951 0.564755 0.825258i \(-0.308971\pi\)
0.564755 + 0.825258i \(0.308971\pi\)
\(684\) 0 0
\(685\) −21.3395 −0.815340
\(686\) 0 0
\(687\) −49.4320 −1.88595
\(688\) 0 0
\(689\) 11.8784 0.452530
\(690\) 0 0
\(691\) 33.6494 1.28009 0.640043 0.768339i \(-0.278917\pi\)
0.640043 + 0.768339i \(0.278917\pi\)
\(692\) 0 0
\(693\) −35.1603 −1.33563
\(694\) 0 0
\(695\) −4.80930 −0.182427
\(696\) 0 0
\(697\) 7.56650 0.286602
\(698\) 0 0
\(699\) −2.52980 −0.0956858
\(700\) 0 0
\(701\) 8.31040 0.313879 0.156940 0.987608i \(-0.449837\pi\)
0.156940 + 0.987608i \(0.449837\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 73.2505 2.75877
\(706\) 0 0
\(707\) 14.1076 0.530570
\(708\) 0 0
\(709\) −6.34710 −0.238370 −0.119185 0.992872i \(-0.538028\pi\)
−0.119185 + 0.992872i \(0.538028\pi\)
\(710\) 0 0
\(711\) 25.1092 0.941667
\(712\) 0 0
\(713\) −0.957348 −0.0358529
\(714\) 0 0
\(715\) 14.7108 0.550153
\(716\) 0 0
\(717\) 57.1047 2.13261
\(718\) 0 0
\(719\) 6.30335 0.235075 0.117538 0.993068i \(-0.462500\pi\)
0.117538 + 0.993068i \(0.462500\pi\)
\(720\) 0 0
\(721\) −3.74301 −0.139397
\(722\) 0 0
\(723\) −10.6123 −0.394675
\(724\) 0 0
\(725\) 94.9996 3.52820
\(726\) 0 0
\(727\) 25.5955 0.949283 0.474641 0.880179i \(-0.342578\pi\)
0.474641 + 0.880179i \(0.342578\pi\)
\(728\) 0 0
\(729\) −15.5093 −0.574419
\(730\) 0 0
\(731\) −12.6279 −0.467060
\(732\) 0 0
\(733\) 44.5854 1.64680 0.823399 0.567462i \(-0.192075\pi\)
0.823399 + 0.567462i \(0.192075\pi\)
\(734\) 0 0
\(735\) 91.3479 3.36942
\(736\) 0 0
\(737\) −0.442163 −0.0162873
\(738\) 0 0
\(739\) −8.88362 −0.326789 −0.163395 0.986561i \(-0.552244\pi\)
−0.163395 + 0.986561i \(0.552244\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.95993 0.255335 0.127667 0.991817i \(-0.459251\pi\)
0.127667 + 0.991817i \(0.459251\pi\)
\(744\) 0 0
\(745\) −38.4140 −1.40738
\(746\) 0 0
\(747\) −0.259868 −0.00950809
\(748\) 0 0
\(749\) −49.5451 −1.81034
\(750\) 0 0
\(751\) 45.9568 1.67699 0.838494 0.544911i \(-0.183437\pi\)
0.838494 + 0.544911i \(0.183437\pi\)
\(752\) 0 0
\(753\) −62.0028 −2.25951
\(754\) 0 0
\(755\) 15.4032 0.560578
\(756\) 0 0
\(757\) 39.7227 1.44375 0.721873 0.692025i \(-0.243281\pi\)
0.721873 + 0.692025i \(0.243281\pi\)
\(758\) 0 0
\(759\) −2.49849 −0.0906894
\(760\) 0 0
\(761\) 4.91504 0.178170 0.0890850 0.996024i \(-0.471606\pi\)
0.0890850 + 0.996024i \(0.471606\pi\)
\(762\) 0 0
\(763\) 45.7764 1.65722
\(764\) 0 0
\(765\) 20.5276 0.742178
\(766\) 0 0
\(767\) −0.555510 −0.0200583
\(768\) 0 0
\(769\) 1.29448 0.0466801 0.0233401 0.999728i \(-0.492570\pi\)
0.0233401 + 0.999728i \(0.492570\pi\)
\(770\) 0 0
\(771\) −32.9954 −1.18830
\(772\) 0 0
\(773\) −40.1559 −1.44431 −0.722154 0.691732i \(-0.756848\pi\)
−0.722154 + 0.691732i \(0.756848\pi\)
\(774\) 0 0
\(775\) −42.8793 −1.54027
\(776\) 0 0
\(777\) −28.1984 −1.01161
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 9.72003 0.347810
\(782\) 0 0
\(783\) 9.85384 0.352148
\(784\) 0 0
\(785\) 99.4176 3.54837
\(786\) 0 0
\(787\) −47.3790 −1.68888 −0.844439 0.535652i \(-0.820066\pi\)
−0.844439 + 0.535652i \(0.820066\pi\)
\(788\) 0 0
\(789\) 49.4302 1.75976
\(790\) 0 0
\(791\) −0.729874 −0.0259513
\(792\) 0 0
\(793\) −12.5593 −0.445994
\(794\) 0 0
\(795\) −124.424 −4.41288
\(796\) 0 0
\(797\) 34.4310 1.21961 0.609805 0.792551i \(-0.291248\pi\)
0.609805 + 0.792551i \(0.291248\pi\)
\(798\) 0 0
\(799\) −14.6995 −0.520030
\(800\) 0 0
\(801\) −33.9798 −1.20062
\(802\) 0 0
\(803\) 0.934153 0.0329655
\(804\) 0 0
\(805\) 5.09206 0.179472
\(806\) 0 0
\(807\) −3.52589 −0.124117
\(808\) 0 0
\(809\) 17.0088 0.597997 0.298998 0.954254i \(-0.403347\pi\)
0.298998 + 0.954254i \(0.403347\pi\)
\(810\) 0 0
\(811\) −26.2380 −0.921340 −0.460670 0.887571i \(-0.652391\pi\)
−0.460670 + 0.887571i \(0.652391\pi\)
\(812\) 0 0
\(813\) 13.7769 0.483177
\(814\) 0 0
\(815\) −56.5102 −1.97946
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 9.19503 0.321300
\(820\) 0 0
\(821\) −24.7915 −0.865228 −0.432614 0.901579i \(-0.642409\pi\)
−0.432614 + 0.901579i \(0.642409\pi\)
\(822\) 0 0
\(823\) −21.6023 −0.753009 −0.376504 0.926415i \(-0.622874\pi\)
−0.376504 + 0.926415i \(0.622874\pi\)
\(824\) 0 0
\(825\) −111.906 −3.89608
\(826\) 0 0
\(827\) −24.2313 −0.842604 −0.421302 0.906920i \(-0.638427\pi\)
−0.421302 + 0.906920i \(0.638427\pi\)
\(828\) 0 0
\(829\) −50.1015 −1.74010 −0.870049 0.492966i \(-0.835913\pi\)
−0.870049 + 0.492966i \(0.835913\pi\)
\(830\) 0 0
\(831\) 18.2317 0.632451
\(832\) 0 0
\(833\) −18.3311 −0.635137
\(834\) 0 0
\(835\) 108.695 3.76155
\(836\) 0 0
\(837\) −4.44766 −0.153733
\(838\) 0 0
\(839\) −24.7648 −0.854977 −0.427489 0.904021i \(-0.640602\pi\)
−0.427489 + 0.904021i \(0.640602\pi\)
\(840\) 0 0
\(841\) 22.3045 0.769121
\(842\) 0 0
\(843\) −37.9358 −1.30658
\(844\) 0 0
\(845\) 51.7088 1.77884
\(846\) 0 0
\(847\) −8.70287 −0.299034
\(848\) 0 0
\(849\) −21.2713 −0.730030
\(850\) 0 0
\(851\) −0.892307 −0.0305879
\(852\) 0 0
\(853\) 19.0995 0.653956 0.326978 0.945032i \(-0.393970\pi\)
0.326978 + 0.945032i \(0.393970\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −47.8934 −1.63601 −0.818003 0.575214i \(-0.804919\pi\)
−0.818003 + 0.575214i \(0.804919\pi\)
\(858\) 0 0
\(859\) −20.9112 −0.713482 −0.356741 0.934203i \(-0.616112\pi\)
−0.356741 + 0.934203i \(0.616112\pi\)
\(860\) 0 0
\(861\) −35.5024 −1.20992
\(862\) 0 0
\(863\) −47.6708 −1.62273 −0.811366 0.584538i \(-0.801276\pi\)
−0.811366 + 0.584538i \(0.801276\pi\)
\(864\) 0 0
\(865\) −55.5660 −1.88930
\(866\) 0 0
\(867\) 30.2848 1.02853
\(868\) 0 0
\(869\) 37.8242 1.28310
\(870\) 0 0
\(871\) 0.115633 0.00391808
\(872\) 0 0
\(873\) −17.0348 −0.576539
\(874\) 0 0
\(875\) 142.092 4.80358
\(876\) 0 0
\(877\) −42.5151 −1.43563 −0.717816 0.696233i \(-0.754858\pi\)
−0.717816 + 0.696233i \(0.754858\pi\)
\(878\) 0 0
\(879\) 22.5075 0.759161
\(880\) 0 0
\(881\) −4.80993 −0.162051 −0.0810253 0.996712i \(-0.525819\pi\)
−0.0810253 + 0.996712i \(0.525819\pi\)
\(882\) 0 0
\(883\) 29.4745 0.991894 0.495947 0.868353i \(-0.334821\pi\)
0.495947 + 0.868353i \(0.334821\pi\)
\(884\) 0 0
\(885\) 5.81890 0.195600
\(886\) 0 0
\(887\) 41.9726 1.40930 0.704651 0.709554i \(-0.251104\pi\)
0.704651 + 0.709554i \(0.251104\pi\)
\(888\) 0 0
\(889\) 56.2968 1.88813
\(890\) 0 0
\(891\) −37.8215 −1.26707
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −66.0132 −2.20658
\(896\) 0 0
\(897\) 0.653398 0.0218163
\(898\) 0 0
\(899\) −23.1569 −0.772327
\(900\) 0 0
\(901\) 24.9687 0.831829
\(902\) 0 0
\(903\) 59.2507 1.97174
\(904\) 0 0
\(905\) 21.6899 0.720996
\(906\) 0 0
\(907\) −51.4073 −1.70695 −0.853475 0.521133i \(-0.825509\pi\)
−0.853475 + 0.521133i \(0.825509\pi\)
\(908\) 0 0
\(909\) −8.44403 −0.280071
\(910\) 0 0
\(911\) −31.3484 −1.03862 −0.519309 0.854587i \(-0.673811\pi\)
−0.519309 + 0.854587i \(0.673811\pi\)
\(912\) 0 0
\(913\) −0.391463 −0.0129555
\(914\) 0 0
\(915\) 131.557 4.34914
\(916\) 0 0
\(917\) −36.3796 −1.20136
\(918\) 0 0
\(919\) 10.3920 0.342799 0.171400 0.985202i \(-0.445171\pi\)
0.171400 + 0.985202i \(0.445171\pi\)
\(920\) 0 0
\(921\) 28.7070 0.945928
\(922\) 0 0
\(923\) −2.54196 −0.0836695
\(924\) 0 0
\(925\) −39.9661 −1.31408
\(926\) 0 0
\(927\) 2.24036 0.0735832
\(928\) 0 0
\(929\) −14.8710 −0.487900 −0.243950 0.969788i \(-0.578443\pi\)
−0.243950 + 0.969788i \(0.578443\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 13.0485 0.427187
\(934\) 0 0
\(935\) 30.9226 1.01128
\(936\) 0 0
\(937\) −33.2824 −1.08729 −0.543644 0.839316i \(-0.682956\pi\)
−0.543644 + 0.839316i \(0.682956\pi\)
\(938\) 0 0
\(939\) −10.3257 −0.336967
\(940\) 0 0
\(941\) −18.6106 −0.606688 −0.303344 0.952881i \(-0.598103\pi\)
−0.303344 + 0.952881i \(0.598103\pi\)
\(942\) 0 0
\(943\) −1.12343 −0.0365840
\(944\) 0 0
\(945\) 23.6568 0.769554
\(946\) 0 0
\(947\) −47.8163 −1.55382 −0.776911 0.629610i \(-0.783215\pi\)
−0.776911 + 0.629610i \(0.783215\pi\)
\(948\) 0 0
\(949\) −0.244297 −0.00793021
\(950\) 0 0
\(951\) −52.7637 −1.71098
\(952\) 0 0
\(953\) 18.6549 0.604290 0.302145 0.953262i \(-0.402297\pi\)
0.302145 + 0.953262i \(0.402297\pi\)
\(954\) 0 0
\(955\) −62.0789 −2.00883
\(956\) 0 0
\(957\) −60.4350 −1.95359
\(958\) 0 0
\(959\) −20.0927 −0.648826
\(960\) 0 0
\(961\) −20.5478 −0.662833
\(962\) 0 0
\(963\) 29.6550 0.955620
\(964\) 0 0
\(965\) 11.2426 0.361913
\(966\) 0 0
\(967\) −36.2138 −1.16456 −0.582279 0.812989i \(-0.697839\pi\)
−0.582279 + 0.812989i \(0.697839\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −13.1618 −0.422382 −0.211191 0.977445i \(-0.567734\pi\)
−0.211191 + 0.977445i \(0.567734\pi\)
\(972\) 0 0
\(973\) −4.52830 −0.145171
\(974\) 0 0
\(975\) 29.2655 0.937245
\(976\) 0 0
\(977\) −26.3877 −0.844216 −0.422108 0.906545i \(-0.638710\pi\)
−0.422108 + 0.906545i \(0.638710\pi\)
\(978\) 0 0
\(979\) −51.1868 −1.63594
\(980\) 0 0
\(981\) −27.3992 −0.874790
\(982\) 0 0
\(983\) −1.00388 −0.0320187 −0.0160093 0.999872i \(-0.505096\pi\)
−0.0160093 + 0.999872i \(0.505096\pi\)
\(984\) 0 0
\(985\) −57.1493 −1.82093
\(986\) 0 0
\(987\) 68.9707 2.19536
\(988\) 0 0
\(989\) 1.87492 0.0596190
\(990\) 0 0
\(991\) 35.5158 1.12820 0.564099 0.825707i \(-0.309224\pi\)
0.564099 + 0.825707i \(0.309224\pi\)
\(992\) 0 0
\(993\) 57.6282 1.82878
\(994\) 0 0
\(995\) −38.4391 −1.21860
\(996\) 0 0
\(997\) −51.7243 −1.63813 −0.819063 0.573703i \(-0.805506\pi\)
−0.819063 + 0.573703i \(0.805506\pi\)
\(998\) 0 0
\(999\) −4.14549 −0.131158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.v.1.2 8
4.3 odd 2 5776.2.a.cc.1.7 8
19.18 odd 2 2888.2.a.w.1.7 yes 8
76.75 even 2 5776.2.a.ca.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2888.2.a.v.1.2 8 1.1 even 1 trivial
2888.2.a.w.1.7 yes 8 19.18 odd 2
5776.2.a.ca.1.2 8 76.75 even 2
5776.2.a.cc.1.7 8 4.3 odd 2