Properties

Label 2888.2.a.u.1.5
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,3,0,2,0,-2,0,9,0,-5,0,10,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.3022625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 7x^{3} + 17x^{2} + 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.70201\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.77311 q^{3} -3.10181 q^{5} +4.25689 q^{7} +4.69013 q^{9} +0.566753 q^{11} +6.64206 q^{13} -8.60166 q^{15} +0.193489 q^{17} +11.8048 q^{21} -1.91382 q^{23} +4.62124 q^{25} +4.68693 q^{27} -6.94796 q^{29} +6.20086 q^{31} +1.57167 q^{33} -13.2041 q^{35} -4.41517 q^{37} +18.4192 q^{39} -6.18678 q^{41} +2.00935 q^{43} -14.5479 q^{45} +11.4545 q^{47} +11.1211 q^{49} +0.536566 q^{51} +0.750308 q^{53} -1.75796 q^{55} -0.815996 q^{59} +0.738209 q^{61} +19.9654 q^{63} -20.6024 q^{65} +7.41886 q^{67} -5.30723 q^{69} -4.98241 q^{71} -7.58880 q^{73} +12.8152 q^{75} +2.41260 q^{77} +11.5038 q^{79} -1.07304 q^{81} -2.71956 q^{83} -0.600167 q^{85} -19.2675 q^{87} +3.28261 q^{89} +28.2745 q^{91} +17.1957 q^{93} -13.0870 q^{97} +2.65815 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} + 2 q^{5} - 2 q^{7} + 9 q^{9} - 5 q^{11} + 10 q^{13} + 4 q^{17} + 23 q^{21} - 15 q^{23} + 12 q^{25} + 18 q^{27} - 7 q^{29} + 5 q^{31} - q^{33} - 38 q^{35} + 17 q^{37} + 37 q^{39} + 4 q^{41}+ \cdots - 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.77311 1.60106 0.800528 0.599296i \(-0.204553\pi\)
0.800528 + 0.599296i \(0.204553\pi\)
\(4\) 0 0
\(5\) −3.10181 −1.38717 −0.693586 0.720373i \(-0.743970\pi\)
−0.693586 + 0.720373i \(0.743970\pi\)
\(6\) 0 0
\(7\) 4.25689 1.60895 0.804476 0.593985i \(-0.202446\pi\)
0.804476 + 0.593985i \(0.202446\pi\)
\(8\) 0 0
\(9\) 4.69013 1.56338
\(10\) 0 0
\(11\) 0.566753 0.170882 0.0854412 0.996343i \(-0.472770\pi\)
0.0854412 + 0.996343i \(0.472770\pi\)
\(12\) 0 0
\(13\) 6.64206 1.84218 0.921088 0.389354i \(-0.127302\pi\)
0.921088 + 0.389354i \(0.127302\pi\)
\(14\) 0 0
\(15\) −8.60166 −2.22094
\(16\) 0 0
\(17\) 0.193489 0.0469280 0.0234640 0.999725i \(-0.492530\pi\)
0.0234640 + 0.999725i \(0.492530\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 11.8048 2.57602
\(22\) 0 0
\(23\) −1.91382 −0.399059 −0.199529 0.979892i \(-0.563941\pi\)
−0.199529 + 0.979892i \(0.563941\pi\)
\(24\) 0 0
\(25\) 4.62124 0.924248
\(26\) 0 0
\(27\) 4.68693 0.902000
\(28\) 0 0
\(29\) −6.94796 −1.29020 −0.645102 0.764096i \(-0.723185\pi\)
−0.645102 + 0.764096i \(0.723185\pi\)
\(30\) 0 0
\(31\) 6.20086 1.11371 0.556854 0.830611i \(-0.312008\pi\)
0.556854 + 0.830611i \(0.312008\pi\)
\(32\) 0 0
\(33\) 1.57167 0.273592
\(34\) 0 0
\(35\) −13.2041 −2.23189
\(36\) 0 0
\(37\) −4.41517 −0.725849 −0.362925 0.931818i \(-0.618222\pi\)
−0.362925 + 0.931818i \(0.618222\pi\)
\(38\) 0 0
\(39\) 18.4192 2.94943
\(40\) 0 0
\(41\) −6.18678 −0.966213 −0.483106 0.875562i \(-0.660492\pi\)
−0.483106 + 0.875562i \(0.660492\pi\)
\(42\) 0 0
\(43\) 2.00935 0.306424 0.153212 0.988193i \(-0.451038\pi\)
0.153212 + 0.988193i \(0.451038\pi\)
\(44\) 0 0
\(45\) −14.5479 −2.16868
\(46\) 0 0
\(47\) 11.4545 1.67082 0.835408 0.549630i \(-0.185231\pi\)
0.835408 + 0.549630i \(0.185231\pi\)
\(48\) 0 0
\(49\) 11.1211 1.58873
\(50\) 0 0
\(51\) 0.536566 0.0751343
\(52\) 0 0
\(53\) 0.750308 0.103063 0.0515314 0.998671i \(-0.483590\pi\)
0.0515314 + 0.998671i \(0.483590\pi\)
\(54\) 0 0
\(55\) −1.75796 −0.237043
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.815996 −0.106234 −0.0531168 0.998588i \(-0.516916\pi\)
−0.0531168 + 0.998588i \(0.516916\pi\)
\(60\) 0 0
\(61\) 0.738209 0.0945180 0.0472590 0.998883i \(-0.484951\pi\)
0.0472590 + 0.998883i \(0.484951\pi\)
\(62\) 0 0
\(63\) 19.9654 2.51540
\(64\) 0 0
\(65\) −20.6024 −2.55542
\(66\) 0 0
\(67\) 7.41886 0.906358 0.453179 0.891420i \(-0.350290\pi\)
0.453179 + 0.891420i \(0.350290\pi\)
\(68\) 0 0
\(69\) −5.30723 −0.638915
\(70\) 0 0
\(71\) −4.98241 −0.591303 −0.295651 0.955296i \(-0.595537\pi\)
−0.295651 + 0.955296i \(0.595537\pi\)
\(72\) 0 0
\(73\) −7.58880 −0.888202 −0.444101 0.895977i \(-0.646477\pi\)
−0.444101 + 0.895977i \(0.646477\pi\)
\(74\) 0 0
\(75\) 12.8152 1.47977
\(76\) 0 0
\(77\) 2.41260 0.274942
\(78\) 0 0
\(79\) 11.5038 1.29428 0.647142 0.762370i \(-0.275964\pi\)
0.647142 + 0.762370i \(0.275964\pi\)
\(80\) 0 0
\(81\) −1.07304 −0.119227
\(82\) 0 0
\(83\) −2.71956 −0.298511 −0.149255 0.988799i \(-0.547688\pi\)
−0.149255 + 0.988799i \(0.547688\pi\)
\(84\) 0 0
\(85\) −0.600167 −0.0650972
\(86\) 0 0
\(87\) −19.2675 −2.06569
\(88\) 0 0
\(89\) 3.28261 0.347956 0.173978 0.984750i \(-0.444338\pi\)
0.173978 + 0.984750i \(0.444338\pi\)
\(90\) 0 0
\(91\) 28.2745 2.96397
\(92\) 0 0
\(93\) 17.1957 1.78311
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −13.0870 −1.32878 −0.664389 0.747387i \(-0.731308\pi\)
−0.664389 + 0.747387i \(0.731308\pi\)
\(98\) 0 0
\(99\) 2.65815 0.267154
\(100\) 0 0
\(101\) 6.11668 0.608632 0.304316 0.952571i \(-0.401572\pi\)
0.304316 + 0.952571i \(0.401572\pi\)
\(102\) 0 0
\(103\) 11.8798 1.17055 0.585277 0.810833i \(-0.300986\pi\)
0.585277 + 0.810833i \(0.300986\pi\)
\(104\) 0 0
\(105\) −36.6163 −3.57339
\(106\) 0 0
\(107\) 1.05923 0.102400 0.0512000 0.998688i \(-0.483695\pi\)
0.0512000 + 0.998688i \(0.483695\pi\)
\(108\) 0 0
\(109\) −15.3255 −1.46791 −0.733957 0.679196i \(-0.762329\pi\)
−0.733957 + 0.679196i \(0.762329\pi\)
\(110\) 0 0
\(111\) −12.2437 −1.16213
\(112\) 0 0
\(113\) 16.1127 1.51576 0.757878 0.652397i \(-0.226236\pi\)
0.757878 + 0.652397i \(0.226236\pi\)
\(114\) 0 0
\(115\) 5.93631 0.553564
\(116\) 0 0
\(117\) 31.1522 2.88002
\(118\) 0 0
\(119\) 0.823661 0.0755049
\(120\) 0 0
\(121\) −10.6788 −0.970799
\(122\) 0 0
\(123\) −17.1566 −1.54696
\(124\) 0 0
\(125\) 1.17484 0.105081
\(126\) 0 0
\(127\) 10.2862 0.912749 0.456374 0.889788i \(-0.349148\pi\)
0.456374 + 0.889788i \(0.349148\pi\)
\(128\) 0 0
\(129\) 5.57216 0.490601
\(130\) 0 0
\(131\) −16.1635 −1.41221 −0.706106 0.708106i \(-0.749550\pi\)
−0.706106 + 0.708106i \(0.749550\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −14.5380 −1.25123
\(136\) 0 0
\(137\) −6.56182 −0.560614 −0.280307 0.959910i \(-0.590436\pi\)
−0.280307 + 0.959910i \(0.590436\pi\)
\(138\) 0 0
\(139\) −15.3362 −1.30080 −0.650399 0.759593i \(-0.725398\pi\)
−0.650399 + 0.759593i \(0.725398\pi\)
\(140\) 0 0
\(141\) 31.7647 2.67507
\(142\) 0 0
\(143\) 3.76441 0.314796
\(144\) 0 0
\(145\) 21.5513 1.78974
\(146\) 0 0
\(147\) 30.8400 2.54364
\(148\) 0 0
\(149\) 21.4978 1.76117 0.880586 0.473886i \(-0.157149\pi\)
0.880586 + 0.473886i \(0.157149\pi\)
\(150\) 0 0
\(151\) −7.01136 −0.570576 −0.285288 0.958442i \(-0.592089\pi\)
−0.285288 + 0.958442i \(0.592089\pi\)
\(152\) 0 0
\(153\) 0.907489 0.0733662
\(154\) 0 0
\(155\) −19.2339 −1.54490
\(156\) 0 0
\(157\) −4.73713 −0.378064 −0.189032 0.981971i \(-0.560535\pi\)
−0.189032 + 0.981971i \(0.560535\pi\)
\(158\) 0 0
\(159\) 2.08069 0.165009
\(160\) 0 0
\(161\) −8.14691 −0.642067
\(162\) 0 0
\(163\) 5.54839 0.434583 0.217292 0.976107i \(-0.430278\pi\)
0.217292 + 0.976107i \(0.430278\pi\)
\(164\) 0 0
\(165\) −4.87502 −0.379520
\(166\) 0 0
\(167\) 8.59351 0.664986 0.332493 0.943106i \(-0.392110\pi\)
0.332493 + 0.943106i \(0.392110\pi\)
\(168\) 0 0
\(169\) 31.1170 2.39361
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.80204 0.669207 0.334603 0.942359i \(-0.391398\pi\)
0.334603 + 0.942359i \(0.391398\pi\)
\(174\) 0 0
\(175\) 19.6721 1.48707
\(176\) 0 0
\(177\) −2.26284 −0.170086
\(178\) 0 0
\(179\) 12.2102 0.912634 0.456317 0.889817i \(-0.349168\pi\)
0.456317 + 0.889817i \(0.349168\pi\)
\(180\) 0 0
\(181\) 19.0572 1.41651 0.708257 0.705955i \(-0.249482\pi\)
0.708257 + 0.705955i \(0.249482\pi\)
\(182\) 0 0
\(183\) 2.04713 0.151329
\(184\) 0 0
\(185\) 13.6950 1.00688
\(186\) 0 0
\(187\) 0.109660 0.00801917
\(188\) 0 0
\(189\) 19.9517 1.45127
\(190\) 0 0
\(191\) 5.77756 0.418050 0.209025 0.977910i \(-0.432971\pi\)
0.209025 + 0.977910i \(0.432971\pi\)
\(192\) 0 0
\(193\) −1.83705 −0.132234 −0.0661168 0.997812i \(-0.521061\pi\)
−0.0661168 + 0.997812i \(0.521061\pi\)
\(194\) 0 0
\(195\) −57.1328 −4.09136
\(196\) 0 0
\(197\) −16.2066 −1.15467 −0.577337 0.816506i \(-0.695908\pi\)
−0.577337 + 0.816506i \(0.695908\pi\)
\(198\) 0 0
\(199\) −10.5385 −0.747057 −0.373529 0.927619i \(-0.621852\pi\)
−0.373529 + 0.927619i \(0.621852\pi\)
\(200\) 0 0
\(201\) 20.5733 1.45113
\(202\) 0 0
\(203\) −29.5767 −2.07588
\(204\) 0 0
\(205\) 19.1902 1.34030
\(206\) 0 0
\(207\) −8.97607 −0.623880
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 11.4598 0.788922 0.394461 0.918913i \(-0.370931\pi\)
0.394461 + 0.918913i \(0.370931\pi\)
\(212\) 0 0
\(213\) −13.8168 −0.946709
\(214\) 0 0
\(215\) −6.23264 −0.425062
\(216\) 0 0
\(217\) 26.3964 1.79190
\(218\) 0 0
\(219\) −21.0446 −1.42206
\(220\) 0 0
\(221\) 1.28517 0.0864496
\(222\) 0 0
\(223\) 9.67115 0.647628 0.323814 0.946121i \(-0.395035\pi\)
0.323814 + 0.946121i \(0.395035\pi\)
\(224\) 0 0
\(225\) 21.6742 1.44495
\(226\) 0 0
\(227\) 13.7650 0.913617 0.456808 0.889565i \(-0.348992\pi\)
0.456808 + 0.889565i \(0.348992\pi\)
\(228\) 0 0
\(229\) −24.5777 −1.62414 −0.812071 0.583559i \(-0.801660\pi\)
−0.812071 + 0.583559i \(0.801660\pi\)
\(230\) 0 0
\(231\) 6.69041 0.440197
\(232\) 0 0
\(233\) −13.6988 −0.897439 −0.448720 0.893673i \(-0.648120\pi\)
−0.448720 + 0.893673i \(0.648120\pi\)
\(234\) 0 0
\(235\) −35.5298 −2.31771
\(236\) 0 0
\(237\) 31.9014 2.07222
\(238\) 0 0
\(239\) 29.0433 1.87866 0.939328 0.343020i \(-0.111450\pi\)
0.939328 + 0.343020i \(0.111450\pi\)
\(240\) 0 0
\(241\) −16.0586 −1.03443 −0.517214 0.855856i \(-0.673031\pi\)
−0.517214 + 0.855856i \(0.673031\pi\)
\(242\) 0 0
\(243\) −17.0364 −1.09289
\(244\) 0 0
\(245\) −34.4955 −2.20384
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −7.54164 −0.477932
\(250\) 0 0
\(251\) −17.9373 −1.13219 −0.566096 0.824340i \(-0.691547\pi\)
−0.566096 + 0.824340i \(0.691547\pi\)
\(252\) 0 0
\(253\) −1.08466 −0.0681922
\(254\) 0 0
\(255\) −1.66433 −0.104224
\(256\) 0 0
\(257\) −13.4227 −0.837283 −0.418642 0.908152i \(-0.637494\pi\)
−0.418642 + 0.908152i \(0.637494\pi\)
\(258\) 0 0
\(259\) −18.7949 −1.16786
\(260\) 0 0
\(261\) −32.5869 −2.01708
\(262\) 0 0
\(263\) −23.4920 −1.44858 −0.724291 0.689495i \(-0.757833\pi\)
−0.724291 + 0.689495i \(0.757833\pi\)
\(264\) 0 0
\(265\) −2.32731 −0.142966
\(266\) 0 0
\(267\) 9.10304 0.557097
\(268\) 0 0
\(269\) −27.0042 −1.64647 −0.823237 0.567698i \(-0.807834\pi\)
−0.823237 + 0.567698i \(0.807834\pi\)
\(270\) 0 0
\(271\) 0.668554 0.0406117 0.0203059 0.999794i \(-0.493536\pi\)
0.0203059 + 0.999794i \(0.493536\pi\)
\(272\) 0 0
\(273\) 78.4083 4.74549
\(274\) 0 0
\(275\) 2.61910 0.157938
\(276\) 0 0
\(277\) −20.4557 −1.22907 −0.614533 0.788891i \(-0.710656\pi\)
−0.614533 + 0.788891i \(0.710656\pi\)
\(278\) 0 0
\(279\) 29.0829 1.74115
\(280\) 0 0
\(281\) −3.85165 −0.229770 −0.114885 0.993379i \(-0.536650\pi\)
−0.114885 + 0.993379i \(0.536650\pi\)
\(282\) 0 0
\(283\) −23.4241 −1.39242 −0.696208 0.717840i \(-0.745131\pi\)
−0.696208 + 0.717840i \(0.745131\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −26.3364 −1.55459
\(288\) 0 0
\(289\) −16.9626 −0.997798
\(290\) 0 0
\(291\) −36.2916 −2.12745
\(292\) 0 0
\(293\) −5.80219 −0.338967 −0.169484 0.985533i \(-0.554210\pi\)
−0.169484 + 0.985533i \(0.554210\pi\)
\(294\) 0 0
\(295\) 2.53107 0.147364
\(296\) 0 0
\(297\) 2.65633 0.154136
\(298\) 0 0
\(299\) −12.7117 −0.735137
\(300\) 0 0
\(301\) 8.55359 0.493021
\(302\) 0 0
\(303\) 16.9622 0.974453
\(304\) 0 0
\(305\) −2.28979 −0.131113
\(306\) 0 0
\(307\) −9.52173 −0.543434 −0.271717 0.962377i \(-0.587591\pi\)
−0.271717 + 0.962377i \(0.587591\pi\)
\(308\) 0 0
\(309\) 32.9441 1.87412
\(310\) 0 0
\(311\) −9.73990 −0.552299 −0.276149 0.961115i \(-0.589058\pi\)
−0.276149 + 0.961115i \(0.589058\pi\)
\(312\) 0 0
\(313\) −18.3536 −1.03741 −0.518703 0.854955i \(-0.673585\pi\)
−0.518703 + 0.854955i \(0.673585\pi\)
\(314\) 0 0
\(315\) −61.9289 −3.48930
\(316\) 0 0
\(317\) −26.8441 −1.50771 −0.753857 0.657039i \(-0.771809\pi\)
−0.753857 + 0.657039i \(0.771809\pi\)
\(318\) 0 0
\(319\) −3.93778 −0.220473
\(320\) 0 0
\(321\) 2.93737 0.163948
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 30.6946 1.70263
\(326\) 0 0
\(327\) −42.4992 −2.35021
\(328\) 0 0
\(329\) 48.7607 2.68826
\(330\) 0 0
\(331\) −27.2895 −1.49997 −0.749983 0.661457i \(-0.769938\pi\)
−0.749983 + 0.661457i \(0.769938\pi\)
\(332\) 0 0
\(333\) −20.7077 −1.13478
\(334\) 0 0
\(335\) −23.0119 −1.25727
\(336\) 0 0
\(337\) 5.58741 0.304366 0.152183 0.988352i \(-0.451370\pi\)
0.152183 + 0.988352i \(0.451370\pi\)
\(338\) 0 0
\(339\) 44.6823 2.42681
\(340\) 0 0
\(341\) 3.51436 0.190313
\(342\) 0 0
\(343\) 17.5430 0.947235
\(344\) 0 0
\(345\) 16.4620 0.886286
\(346\) 0 0
\(347\) 8.88534 0.476990 0.238495 0.971144i \(-0.423346\pi\)
0.238495 + 0.971144i \(0.423346\pi\)
\(348\) 0 0
\(349\) −18.2283 −0.975738 −0.487869 0.872917i \(-0.662226\pi\)
−0.487869 + 0.872917i \(0.662226\pi\)
\(350\) 0 0
\(351\) 31.1309 1.66164
\(352\) 0 0
\(353\) 16.6364 0.885466 0.442733 0.896654i \(-0.354009\pi\)
0.442733 + 0.896654i \(0.354009\pi\)
\(354\) 0 0
\(355\) 15.4545 0.820239
\(356\) 0 0
\(357\) 2.28410 0.120887
\(358\) 0 0
\(359\) 27.3176 1.44177 0.720884 0.693056i \(-0.243736\pi\)
0.720884 + 0.693056i \(0.243736\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −29.6135 −1.55430
\(364\) 0 0
\(365\) 23.5390 1.23209
\(366\) 0 0
\(367\) −6.89847 −0.360097 −0.180048 0.983658i \(-0.557625\pi\)
−0.180048 + 0.983658i \(0.557625\pi\)
\(368\) 0 0
\(369\) −29.0168 −1.51056
\(370\) 0 0
\(371\) 3.19398 0.165823
\(372\) 0 0
\(373\) 9.75228 0.504954 0.252477 0.967603i \(-0.418755\pi\)
0.252477 + 0.967603i \(0.418755\pi\)
\(374\) 0 0
\(375\) 3.25796 0.168240
\(376\) 0 0
\(377\) −46.1488 −2.37678
\(378\) 0 0
\(379\) −9.32085 −0.478780 −0.239390 0.970924i \(-0.576947\pi\)
−0.239390 + 0.970924i \(0.576947\pi\)
\(380\) 0 0
\(381\) 28.5246 1.46136
\(382\) 0 0
\(383\) −2.07285 −0.105917 −0.0529587 0.998597i \(-0.516865\pi\)
−0.0529587 + 0.998597i \(0.516865\pi\)
\(384\) 0 0
\(385\) −7.48344 −0.381392
\(386\) 0 0
\(387\) 9.42414 0.479056
\(388\) 0 0
\(389\) 3.51604 0.178270 0.0891352 0.996020i \(-0.471590\pi\)
0.0891352 + 0.996020i \(0.471590\pi\)
\(390\) 0 0
\(391\) −0.370303 −0.0187270
\(392\) 0 0
\(393\) −44.8232 −2.26103
\(394\) 0 0
\(395\) −35.6828 −1.79539
\(396\) 0 0
\(397\) 1.62820 0.0817172 0.0408586 0.999165i \(-0.486991\pi\)
0.0408586 + 0.999165i \(0.486991\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 28.8962 1.44301 0.721504 0.692411i \(-0.243451\pi\)
0.721504 + 0.692411i \(0.243451\pi\)
\(402\) 0 0
\(403\) 41.1865 2.05165
\(404\) 0 0
\(405\) 3.32837 0.165388
\(406\) 0 0
\(407\) −2.50231 −0.124035
\(408\) 0 0
\(409\) 23.9141 1.18248 0.591239 0.806497i \(-0.298639\pi\)
0.591239 + 0.806497i \(0.298639\pi\)
\(410\) 0 0
\(411\) −18.1966 −0.897574
\(412\) 0 0
\(413\) −3.47360 −0.170925
\(414\) 0 0
\(415\) 8.43557 0.414086
\(416\) 0 0
\(417\) −42.5289 −2.08265
\(418\) 0 0
\(419\) −16.3240 −0.797478 −0.398739 0.917064i \(-0.630552\pi\)
−0.398739 + 0.917064i \(0.630552\pi\)
\(420\) 0 0
\(421\) 1.55297 0.0756870 0.0378435 0.999284i \(-0.487951\pi\)
0.0378435 + 0.999284i \(0.487951\pi\)
\(422\) 0 0
\(423\) 53.7233 2.61212
\(424\) 0 0
\(425\) 0.894159 0.0433731
\(426\) 0 0
\(427\) 3.14247 0.152075
\(428\) 0 0
\(429\) 10.4391 0.504005
\(430\) 0 0
\(431\) 1.14815 0.0553044 0.0276522 0.999618i \(-0.491197\pi\)
0.0276522 + 0.999618i \(0.491197\pi\)
\(432\) 0 0
\(433\) 2.98715 0.143553 0.0717767 0.997421i \(-0.477133\pi\)
0.0717767 + 0.997421i \(0.477133\pi\)
\(434\) 0 0
\(435\) 59.7640 2.86547
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 41.6769 1.98913 0.994566 0.104110i \(-0.0331995\pi\)
0.994566 + 0.104110i \(0.0331995\pi\)
\(440\) 0 0
\(441\) 52.1594 2.48378
\(442\) 0 0
\(443\) 19.4084 0.922123 0.461061 0.887368i \(-0.347469\pi\)
0.461061 + 0.887368i \(0.347469\pi\)
\(444\) 0 0
\(445\) −10.1820 −0.482675
\(446\) 0 0
\(447\) 59.6159 2.81973
\(448\) 0 0
\(449\) 0.240767 0.0113625 0.00568126 0.999984i \(-0.498192\pi\)
0.00568126 + 0.999984i \(0.498192\pi\)
\(450\) 0 0
\(451\) −3.50638 −0.165109
\(452\) 0 0
\(453\) −19.4433 −0.913524
\(454\) 0 0
\(455\) −87.7022 −4.11154
\(456\) 0 0
\(457\) −6.02160 −0.281679 −0.140839 0.990032i \(-0.544980\pi\)
−0.140839 + 0.990032i \(0.544980\pi\)
\(458\) 0 0
\(459\) 0.906869 0.0423290
\(460\) 0 0
\(461\) 18.7609 0.873783 0.436892 0.899514i \(-0.356079\pi\)
0.436892 + 0.899514i \(0.356079\pi\)
\(462\) 0 0
\(463\) 0.769304 0.0357526 0.0178763 0.999840i \(-0.494309\pi\)
0.0178763 + 0.999840i \(0.494309\pi\)
\(464\) 0 0
\(465\) −53.3377 −2.47348
\(466\) 0 0
\(467\) −3.83385 −0.177409 −0.0887047 0.996058i \(-0.528273\pi\)
−0.0887047 + 0.996058i \(0.528273\pi\)
\(468\) 0 0
\(469\) 31.5813 1.45829
\(470\) 0 0
\(471\) −13.1366 −0.605302
\(472\) 0 0
\(473\) 1.13881 0.0523624
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 3.51904 0.161126
\(478\) 0 0
\(479\) −38.8045 −1.77302 −0.886512 0.462706i \(-0.846879\pi\)
−0.886512 + 0.462706i \(0.846879\pi\)
\(480\) 0 0
\(481\) −29.3258 −1.33714
\(482\) 0 0
\(483\) −22.5923 −1.02798
\(484\) 0 0
\(485\) 40.5933 1.84325
\(486\) 0 0
\(487\) −11.1940 −0.507247 −0.253623 0.967303i \(-0.581622\pi\)
−0.253623 + 0.967303i \(0.581622\pi\)
\(488\) 0 0
\(489\) 15.3863 0.695792
\(490\) 0 0
\(491\) −17.6829 −0.798019 −0.399010 0.916947i \(-0.630646\pi\)
−0.399010 + 0.916947i \(0.630646\pi\)
\(492\) 0 0
\(493\) −1.34435 −0.0605467
\(494\) 0 0
\(495\) −8.24508 −0.370589
\(496\) 0 0
\(497\) −21.2095 −0.951378
\(498\) 0 0
\(499\) −4.27896 −0.191552 −0.0957762 0.995403i \(-0.530533\pi\)
−0.0957762 + 0.995403i \(0.530533\pi\)
\(500\) 0 0
\(501\) 23.8307 1.06468
\(502\) 0 0
\(503\) −30.3497 −1.35323 −0.676613 0.736338i \(-0.736553\pi\)
−0.676613 + 0.736338i \(0.736553\pi\)
\(504\) 0 0
\(505\) −18.9728 −0.844278
\(506\) 0 0
\(507\) 86.2907 3.83231
\(508\) 0 0
\(509\) 26.4068 1.17046 0.585229 0.810868i \(-0.301004\pi\)
0.585229 + 0.810868i \(0.301004\pi\)
\(510\) 0 0
\(511\) −32.3047 −1.42907
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −36.8490 −1.62376
\(516\) 0 0
\(517\) 6.49190 0.285513
\(518\) 0 0
\(519\) 24.4090 1.07144
\(520\) 0 0
\(521\) −15.7283 −0.689067 −0.344534 0.938774i \(-0.611963\pi\)
−0.344534 + 0.938774i \(0.611963\pi\)
\(522\) 0 0
\(523\) −28.1082 −1.22909 −0.614544 0.788883i \(-0.710660\pi\)
−0.614544 + 0.788883i \(0.710660\pi\)
\(524\) 0 0
\(525\) 54.5529 2.38088
\(526\) 0 0
\(527\) 1.19980 0.0522640
\(528\) 0 0
\(529\) −19.3373 −0.840752
\(530\) 0 0
\(531\) −3.82713 −0.166083
\(532\) 0 0
\(533\) −41.0930 −1.77993
\(534\) 0 0
\(535\) −3.28554 −0.142046
\(536\) 0 0
\(537\) 33.8603 1.46118
\(538\) 0 0
\(539\) 6.30291 0.271486
\(540\) 0 0
\(541\) 44.4767 1.91220 0.956101 0.293039i \(-0.0946665\pi\)
0.956101 + 0.293039i \(0.0946665\pi\)
\(542\) 0 0
\(543\) 52.8478 2.26792
\(544\) 0 0
\(545\) 47.5367 2.03625
\(546\) 0 0
\(547\) 4.65936 0.199220 0.0996100 0.995027i \(-0.468240\pi\)
0.0996100 + 0.995027i \(0.468240\pi\)
\(548\) 0 0
\(549\) 3.46230 0.147767
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 48.9706 2.08244
\(554\) 0 0
\(555\) 37.9778 1.61207
\(556\) 0 0
\(557\) −40.2390 −1.70498 −0.852491 0.522741i \(-0.824909\pi\)
−0.852491 + 0.522741i \(0.824909\pi\)
\(558\) 0 0
\(559\) 13.3462 0.564486
\(560\) 0 0
\(561\) 0.304100 0.0128391
\(562\) 0 0
\(563\) 28.9695 1.22092 0.610460 0.792047i \(-0.290985\pi\)
0.610460 + 0.792047i \(0.290985\pi\)
\(564\) 0 0
\(565\) −49.9786 −2.10261
\(566\) 0 0
\(567\) −4.56781 −0.191830
\(568\) 0 0
\(569\) 22.3774 0.938110 0.469055 0.883169i \(-0.344595\pi\)
0.469055 + 0.883169i \(0.344595\pi\)
\(570\) 0 0
\(571\) −16.9522 −0.709429 −0.354714 0.934975i \(-0.615422\pi\)
−0.354714 + 0.934975i \(0.615422\pi\)
\(572\) 0 0
\(573\) 16.0218 0.669321
\(574\) 0 0
\(575\) −8.84422 −0.368829
\(576\) 0 0
\(577\) −18.7130 −0.779031 −0.389516 0.921020i \(-0.627358\pi\)
−0.389516 + 0.921020i \(0.627358\pi\)
\(578\) 0 0
\(579\) −5.09433 −0.211713
\(580\) 0 0
\(581\) −11.5769 −0.480289
\(582\) 0 0
\(583\) 0.425239 0.0176116
\(584\) 0 0
\(585\) −96.6281 −3.99508
\(586\) 0 0
\(587\) −42.4179 −1.75077 −0.875387 0.483423i \(-0.839393\pi\)
−0.875387 + 0.483423i \(0.839393\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −44.9428 −1.84870
\(592\) 0 0
\(593\) 9.06222 0.372141 0.186070 0.982536i \(-0.440425\pi\)
0.186070 + 0.982536i \(0.440425\pi\)
\(594\) 0 0
\(595\) −2.55484 −0.104738
\(596\) 0 0
\(597\) −29.2245 −1.19608
\(598\) 0 0
\(599\) −13.3157 −0.544064 −0.272032 0.962288i \(-0.587696\pi\)
−0.272032 + 0.962288i \(0.587696\pi\)
\(600\) 0 0
\(601\) −10.6534 −0.434562 −0.217281 0.976109i \(-0.569719\pi\)
−0.217281 + 0.976109i \(0.569719\pi\)
\(602\) 0 0
\(603\) 34.7955 1.41698
\(604\) 0 0
\(605\) 33.1236 1.34667
\(606\) 0 0
\(607\) −19.4759 −0.790504 −0.395252 0.918573i \(-0.629343\pi\)
−0.395252 + 0.918573i \(0.629343\pi\)
\(608\) 0 0
\(609\) −82.0194 −3.32359
\(610\) 0 0
\(611\) 76.0818 3.07794
\(612\) 0 0
\(613\) −4.01131 −0.162015 −0.0810076 0.996713i \(-0.525814\pi\)
−0.0810076 + 0.996713i \(0.525814\pi\)
\(614\) 0 0
\(615\) 53.2166 2.14590
\(616\) 0 0
\(617\) −13.5187 −0.544242 −0.272121 0.962263i \(-0.587725\pi\)
−0.272121 + 0.962263i \(0.587725\pi\)
\(618\) 0 0
\(619\) 17.8029 0.715561 0.357780 0.933806i \(-0.383534\pi\)
0.357780 + 0.933806i \(0.383534\pi\)
\(620\) 0 0
\(621\) −8.96993 −0.359951
\(622\) 0 0
\(623\) 13.9737 0.559845
\(624\) 0 0
\(625\) −26.7503 −1.07001
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.854287 −0.0340626
\(630\) 0 0
\(631\) 5.84534 0.232699 0.116350 0.993208i \(-0.462881\pi\)
0.116350 + 0.993208i \(0.462881\pi\)
\(632\) 0 0
\(633\) 31.7792 1.26311
\(634\) 0 0
\(635\) −31.9057 −1.26614
\(636\) 0 0
\(637\) 73.8670 2.92672
\(638\) 0 0
\(639\) −23.3682 −0.924430
\(640\) 0 0
\(641\) 0.381647 0.0150741 0.00753707 0.999972i \(-0.497601\pi\)
0.00753707 + 0.999972i \(0.497601\pi\)
\(642\) 0 0
\(643\) 17.2648 0.680858 0.340429 0.940270i \(-0.389428\pi\)
0.340429 + 0.940270i \(0.389428\pi\)
\(644\) 0 0
\(645\) −17.2838 −0.680548
\(646\) 0 0
\(647\) 0.270066 0.0106174 0.00530870 0.999986i \(-0.498310\pi\)
0.00530870 + 0.999986i \(0.498310\pi\)
\(648\) 0 0
\(649\) −0.462468 −0.0181535
\(650\) 0 0
\(651\) 73.2000 2.86893
\(652\) 0 0
\(653\) 32.3183 1.26471 0.632356 0.774678i \(-0.282088\pi\)
0.632356 + 0.774678i \(0.282088\pi\)
\(654\) 0 0
\(655\) 50.1362 1.95898
\(656\) 0 0
\(657\) −35.5925 −1.38859
\(658\) 0 0
\(659\) −25.7196 −1.00189 −0.500947 0.865478i \(-0.667015\pi\)
−0.500947 + 0.865478i \(0.667015\pi\)
\(660\) 0 0
\(661\) −24.6610 −0.959203 −0.479601 0.877487i \(-0.659219\pi\)
−0.479601 + 0.877487i \(0.659219\pi\)
\(662\) 0 0
\(663\) 3.56390 0.138411
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 13.2971 0.514867
\(668\) 0 0
\(669\) 26.8192 1.03689
\(670\) 0 0
\(671\) 0.418382 0.0161515
\(672\) 0 0
\(673\) −8.46478 −0.326293 −0.163147 0.986602i \(-0.552164\pi\)
−0.163147 + 0.986602i \(0.552164\pi\)
\(674\) 0 0
\(675\) 21.6594 0.833672
\(676\) 0 0
\(677\) −34.0765 −1.30967 −0.654834 0.755773i \(-0.727261\pi\)
−0.654834 + 0.755773i \(0.727261\pi\)
\(678\) 0 0
\(679\) −55.7097 −2.13794
\(680\) 0 0
\(681\) 38.1719 1.46275
\(682\) 0 0
\(683\) 11.7302 0.448843 0.224422 0.974492i \(-0.427951\pi\)
0.224422 + 0.974492i \(0.427951\pi\)
\(684\) 0 0
\(685\) 20.3535 0.777668
\(686\) 0 0
\(687\) −68.1567 −2.60034
\(688\) 0 0
\(689\) 4.98359 0.189860
\(690\) 0 0
\(691\) −5.90586 −0.224669 −0.112335 0.993670i \(-0.535833\pi\)
−0.112335 + 0.993670i \(0.535833\pi\)
\(692\) 0 0
\(693\) 11.3154 0.429838
\(694\) 0 0
\(695\) 47.5700 1.80443
\(696\) 0 0
\(697\) −1.19707 −0.0453424
\(698\) 0 0
\(699\) −37.9883 −1.43685
\(700\) 0 0
\(701\) 44.7194 1.68903 0.844515 0.535532i \(-0.179889\pi\)
0.844515 + 0.535532i \(0.179889\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −98.5281 −3.71078
\(706\) 0 0
\(707\) 26.0380 0.979260
\(708\) 0 0
\(709\) −27.4732 −1.03178 −0.515890 0.856655i \(-0.672539\pi\)
−0.515890 + 0.856655i \(0.672539\pi\)
\(710\) 0 0
\(711\) 53.9546 2.02345
\(712\) 0 0
\(713\) −11.8673 −0.444435
\(714\) 0 0
\(715\) −11.6765 −0.436676
\(716\) 0 0
\(717\) 80.5403 3.00783
\(718\) 0 0
\(719\) 16.8919 0.629963 0.314981 0.949098i \(-0.398002\pi\)
0.314981 + 0.949098i \(0.398002\pi\)
\(720\) 0 0
\(721\) 50.5711 1.88337
\(722\) 0 0
\(723\) −44.5323 −1.65618
\(724\) 0 0
\(725\) −32.1082 −1.19247
\(726\) 0 0
\(727\) −22.8934 −0.849070 −0.424535 0.905412i \(-0.639562\pi\)
−0.424535 + 0.905412i \(0.639562\pi\)
\(728\) 0 0
\(729\) −44.0248 −1.63055
\(730\) 0 0
\(731\) 0.388788 0.0143798
\(732\) 0 0
\(733\) −19.8206 −0.732090 −0.366045 0.930597i \(-0.619288\pi\)
−0.366045 + 0.930597i \(0.619288\pi\)
\(734\) 0 0
\(735\) −95.6599 −3.52847
\(736\) 0 0
\(737\) 4.20466 0.154881
\(738\) 0 0
\(739\) −4.29518 −0.158001 −0.0790003 0.996875i \(-0.525173\pi\)
−0.0790003 + 0.996875i \(0.525173\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.02433 0.110952 0.0554759 0.998460i \(-0.482332\pi\)
0.0554759 + 0.998460i \(0.482332\pi\)
\(744\) 0 0
\(745\) −66.6823 −2.44305
\(746\) 0 0
\(747\) −12.7551 −0.466685
\(748\) 0 0
\(749\) 4.50904 0.164757
\(750\) 0 0
\(751\) 33.6947 1.22954 0.614768 0.788708i \(-0.289250\pi\)
0.614768 + 0.788708i \(0.289250\pi\)
\(752\) 0 0
\(753\) −49.7420 −1.81270
\(754\) 0 0
\(755\) 21.7479 0.791488
\(756\) 0 0
\(757\) 6.70455 0.243681 0.121840 0.992550i \(-0.461120\pi\)
0.121840 + 0.992550i \(0.461120\pi\)
\(758\) 0 0
\(759\) −3.00789 −0.109179
\(760\) 0 0
\(761\) 30.0829 1.09051 0.545253 0.838272i \(-0.316434\pi\)
0.545253 + 0.838272i \(0.316434\pi\)
\(762\) 0 0
\(763\) −65.2388 −2.36180
\(764\) 0 0
\(765\) −2.81486 −0.101772
\(766\) 0 0
\(767\) −5.41989 −0.195701
\(768\) 0 0
\(769\) 51.6739 1.86341 0.931704 0.363217i \(-0.118322\pi\)
0.931704 + 0.363217i \(0.118322\pi\)
\(770\) 0 0
\(771\) −37.2225 −1.34054
\(772\) 0 0
\(773\) 27.0587 0.973233 0.486617 0.873616i \(-0.338231\pi\)
0.486617 + 0.873616i \(0.338231\pi\)
\(774\) 0 0
\(775\) 28.6557 1.02934
\(776\) 0 0
\(777\) −52.1203 −1.86980
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −2.82379 −0.101043
\(782\) 0 0
\(783\) −32.5646 −1.16376
\(784\) 0 0
\(785\) 14.6937 0.524441
\(786\) 0 0
\(787\) −8.22914 −0.293337 −0.146669 0.989186i \(-0.546855\pi\)
−0.146669 + 0.989186i \(0.546855\pi\)
\(788\) 0 0
\(789\) −65.1460 −2.31926
\(790\) 0 0
\(791\) 68.5899 2.43878
\(792\) 0 0
\(793\) 4.90323 0.174119
\(794\) 0 0
\(795\) −6.45390 −0.228896
\(796\) 0 0
\(797\) −1.40735 −0.0498510 −0.0249255 0.999689i \(-0.507935\pi\)
−0.0249255 + 0.999689i \(0.507935\pi\)
\(798\) 0 0
\(799\) 2.21633 0.0784080
\(800\) 0 0
\(801\) 15.3959 0.543987
\(802\) 0 0
\(803\) −4.30097 −0.151778
\(804\) 0 0
\(805\) 25.2702 0.890657
\(806\) 0 0
\(807\) −74.8855 −2.63609
\(808\) 0 0
\(809\) 22.0513 0.775284 0.387642 0.921810i \(-0.373290\pi\)
0.387642 + 0.921810i \(0.373290\pi\)
\(810\) 0 0
\(811\) −45.2435 −1.58871 −0.794357 0.607451i \(-0.792192\pi\)
−0.794357 + 0.607451i \(0.792192\pi\)
\(812\) 0 0
\(813\) 1.85397 0.0650216
\(814\) 0 0
\(815\) −17.2101 −0.602842
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 132.611 4.63381
\(820\) 0 0
\(821\) 6.37194 0.222382 0.111191 0.993799i \(-0.464533\pi\)
0.111191 + 0.993799i \(0.464533\pi\)
\(822\) 0 0
\(823\) −48.4611 −1.68925 −0.844624 0.535360i \(-0.820176\pi\)
−0.844624 + 0.535360i \(0.820176\pi\)
\(824\) 0 0
\(825\) 7.26305 0.252867
\(826\) 0 0
\(827\) 15.7566 0.547910 0.273955 0.961743i \(-0.411668\pi\)
0.273955 + 0.961743i \(0.411668\pi\)
\(828\) 0 0
\(829\) 23.7468 0.824759 0.412380 0.911012i \(-0.364698\pi\)
0.412380 + 0.911012i \(0.364698\pi\)
\(830\) 0 0
\(831\) −56.7260 −1.96780
\(832\) 0 0
\(833\) 2.15181 0.0745558
\(834\) 0 0
\(835\) −26.6555 −0.922450
\(836\) 0 0
\(837\) 29.0630 1.00456
\(838\) 0 0
\(839\) −15.2287 −0.525755 −0.262877 0.964829i \(-0.584671\pi\)
−0.262877 + 0.964829i \(0.584671\pi\)
\(840\) 0 0
\(841\) 19.2742 0.664627
\(842\) 0 0
\(843\) −10.6811 −0.367875
\(844\) 0 0
\(845\) −96.5190 −3.32035
\(846\) 0 0
\(847\) −45.4584 −1.56197
\(848\) 0 0
\(849\) −64.9575 −2.22934
\(850\) 0 0
\(851\) 8.44984 0.289657
\(852\) 0 0
\(853\) 19.0735 0.653064 0.326532 0.945186i \(-0.394120\pi\)
0.326532 + 0.945186i \(0.394120\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.96169 −0.0670100 −0.0335050 0.999439i \(-0.510667\pi\)
−0.0335050 + 0.999439i \(0.510667\pi\)
\(858\) 0 0
\(859\) −37.7907 −1.28940 −0.644701 0.764435i \(-0.723018\pi\)
−0.644701 + 0.764435i \(0.723018\pi\)
\(860\) 0 0
\(861\) −73.0338 −2.48899
\(862\) 0 0
\(863\) −19.0309 −0.647819 −0.323910 0.946088i \(-0.604997\pi\)
−0.323910 + 0.946088i \(0.604997\pi\)
\(864\) 0 0
\(865\) −27.3023 −0.928305
\(866\) 0 0
\(867\) −47.0390 −1.59753
\(868\) 0 0
\(869\) 6.51984 0.221170
\(870\) 0 0
\(871\) 49.2765 1.66967
\(872\) 0 0
\(873\) −61.3796 −2.07738
\(874\) 0 0
\(875\) 5.00117 0.169070
\(876\) 0 0
\(877\) −40.7246 −1.37517 −0.687586 0.726103i \(-0.741330\pi\)
−0.687586 + 0.726103i \(0.741330\pi\)
\(878\) 0 0
\(879\) −16.0901 −0.542706
\(880\) 0 0
\(881\) 29.8779 1.00661 0.503307 0.864108i \(-0.332117\pi\)
0.503307 + 0.864108i \(0.332117\pi\)
\(882\) 0 0
\(883\) 0.568053 0.0191165 0.00955825 0.999954i \(-0.496957\pi\)
0.00955825 + 0.999954i \(0.496957\pi\)
\(884\) 0 0
\(885\) 7.01892 0.235938
\(886\) 0 0
\(887\) −2.97770 −0.0999812 −0.0499906 0.998750i \(-0.515919\pi\)
−0.0499906 + 0.998750i \(0.515919\pi\)
\(888\) 0 0
\(889\) 43.7870 1.46857
\(890\) 0 0
\(891\) −0.608149 −0.0203738
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −37.8738 −1.26598
\(896\) 0 0
\(897\) −35.2509 −1.17699
\(898\) 0 0
\(899\) −43.0833 −1.43691
\(900\) 0 0
\(901\) 0.145176 0.00483652
\(902\) 0 0
\(903\) 23.7200 0.789354
\(904\) 0 0
\(905\) −59.1120 −1.96495
\(906\) 0 0
\(907\) −39.7644 −1.32036 −0.660178 0.751109i \(-0.729519\pi\)
−0.660178 + 0.751109i \(0.729519\pi\)
\(908\) 0 0
\(909\) 28.6880 0.951522
\(910\) 0 0
\(911\) −2.19731 −0.0728002 −0.0364001 0.999337i \(-0.511589\pi\)
−0.0364001 + 0.999337i \(0.511589\pi\)
\(912\) 0 0
\(913\) −1.54132 −0.0510102
\(914\) 0 0
\(915\) −6.34983 −0.209919
\(916\) 0 0
\(917\) −68.8062 −2.27218
\(918\) 0 0
\(919\) 43.1219 1.42246 0.711230 0.702959i \(-0.248138\pi\)
0.711230 + 0.702959i \(0.248138\pi\)
\(920\) 0 0
\(921\) −26.4048 −0.870068
\(922\) 0 0
\(923\) −33.0934 −1.08928
\(924\) 0 0
\(925\) −20.4036 −0.670865
\(926\) 0 0
\(927\) 55.7180 1.83002
\(928\) 0 0
\(929\) 32.7653 1.07499 0.537497 0.843266i \(-0.319370\pi\)
0.537497 + 0.843266i \(0.319370\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −27.0098 −0.884261
\(934\) 0 0
\(935\) −0.340146 −0.0111240
\(936\) 0 0
\(937\) −2.33536 −0.0762927 −0.0381464 0.999272i \(-0.512145\pi\)
−0.0381464 + 0.999272i \(0.512145\pi\)
\(938\) 0 0
\(939\) −50.8965 −1.66094
\(940\) 0 0
\(941\) −44.2494 −1.44249 −0.721245 0.692680i \(-0.756430\pi\)
−0.721245 + 0.692680i \(0.756430\pi\)
\(942\) 0 0
\(943\) 11.8404 0.385576
\(944\) 0 0
\(945\) −61.8865 −2.01317
\(946\) 0 0
\(947\) −44.4959 −1.44592 −0.722961 0.690889i \(-0.757219\pi\)
−0.722961 + 0.690889i \(0.757219\pi\)
\(948\) 0 0
\(949\) −50.4052 −1.63622
\(950\) 0 0
\(951\) −74.4416 −2.41393
\(952\) 0 0
\(953\) 6.15907 0.199512 0.0997560 0.995012i \(-0.468194\pi\)
0.0997560 + 0.995012i \(0.468194\pi\)
\(954\) 0 0
\(955\) −17.9209 −0.579907
\(956\) 0 0
\(957\) −10.9199 −0.352990
\(958\) 0 0
\(959\) −27.9329 −0.902001
\(960\) 0 0
\(961\) 7.45067 0.240344
\(962\) 0 0
\(963\) 4.96795 0.160090
\(964\) 0 0
\(965\) 5.69818 0.183431
\(966\) 0 0
\(967\) 25.5468 0.821531 0.410766 0.911741i \(-0.365261\pi\)
0.410766 + 0.911741i \(0.365261\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 53.3577 1.71233 0.856164 0.516704i \(-0.172841\pi\)
0.856164 + 0.516704i \(0.172841\pi\)
\(972\) 0 0
\(973\) −65.2844 −2.09292
\(974\) 0 0
\(975\) 85.1194 2.72600
\(976\) 0 0
\(977\) 60.5113 1.93593 0.967964 0.251089i \(-0.0807886\pi\)
0.967964 + 0.251089i \(0.0807886\pi\)
\(978\) 0 0
\(979\) 1.86043 0.0594596
\(980\) 0 0
\(981\) −71.8785 −2.29490
\(982\) 0 0
\(983\) 52.7754 1.68327 0.841636 0.540045i \(-0.181593\pi\)
0.841636 + 0.540045i \(0.181593\pi\)
\(984\) 0 0
\(985\) 50.2699 1.60173
\(986\) 0 0
\(987\) 135.219 4.30406
\(988\) 0 0
\(989\) −3.84554 −0.122281
\(990\) 0 0
\(991\) 58.7736 1.86701 0.933503 0.358570i \(-0.116736\pi\)
0.933503 + 0.358570i \(0.116736\pi\)
\(992\) 0 0
\(993\) −75.6767 −2.40153
\(994\) 0 0
\(995\) 32.6886 1.03630
\(996\) 0 0
\(997\) 34.6665 1.09790 0.548949 0.835856i \(-0.315028\pi\)
0.548949 + 0.835856i \(0.315028\pi\)
\(998\) 0 0
\(999\) −20.6936 −0.654716
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.u.1.5 yes 6
4.3 odd 2 5776.2.a.bx.1.2 6
19.18 odd 2 2888.2.a.t.1.2 6
76.75 even 2 5776.2.a.bz.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2888.2.a.t.1.2 6 19.18 odd 2
2888.2.a.u.1.5 yes 6 1.1 even 1 trivial
5776.2.a.bx.1.2 6 4.3 odd 2
5776.2.a.bz.1.5 6 76.75 even 2