Properties

Label 2888.2.a.u.1.4
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,3,0,2,0,-2,0,9,0,-5,0,10,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.3022625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 7x^{3} + 17x^{2} + 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.496915\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.45214 q^{3} +3.79176 q^{5} -3.95766 q^{7} -0.891299 q^{9} -2.06636 q^{11} +3.18371 q^{13} +5.50615 q^{15} +6.58249 q^{17} -5.74706 q^{21} +7.10283 q^{23} +9.37743 q^{25} -5.65070 q^{27} -3.19207 q^{29} +3.24708 q^{31} -3.00063 q^{33} -15.0065 q^{35} +0.364154 q^{37} +4.62318 q^{39} +11.3651 q^{41} -4.39395 q^{43} -3.37959 q^{45} -4.46998 q^{47} +8.66304 q^{49} +9.55868 q^{51} +4.70439 q^{53} -7.83513 q^{55} +10.3237 q^{59} -6.96631 q^{61} +3.52745 q^{63} +12.0719 q^{65} -1.11636 q^{67} +10.3143 q^{69} +10.9421 q^{71} +1.44215 q^{73} +13.6173 q^{75} +8.17793 q^{77} -4.72706 q^{79} -5.53169 q^{81} -4.04937 q^{83} +24.9592 q^{85} -4.63532 q^{87} +2.77258 q^{89} -12.6000 q^{91} +4.71520 q^{93} +14.3211 q^{97} +1.84174 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} + 2 q^{5} - 2 q^{7} + 9 q^{9} - 5 q^{11} + 10 q^{13} + 4 q^{17} + 23 q^{21} - 15 q^{23} + 12 q^{25} + 18 q^{27} - 7 q^{29} + 5 q^{31} - q^{33} - 38 q^{35} + 17 q^{37} + 37 q^{39} + 4 q^{41}+ \cdots - 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.45214 0.838392 0.419196 0.907896i \(-0.362312\pi\)
0.419196 + 0.907896i \(0.362312\pi\)
\(4\) 0 0
\(5\) 3.79176 1.69573 0.847863 0.530215i \(-0.177889\pi\)
0.847863 + 0.530215i \(0.177889\pi\)
\(6\) 0 0
\(7\) −3.95766 −1.49585 −0.747927 0.663781i \(-0.768951\pi\)
−0.747927 + 0.663781i \(0.768951\pi\)
\(8\) 0 0
\(9\) −0.891299 −0.297100
\(10\) 0 0
\(11\) −2.06636 −0.623030 −0.311515 0.950241i \(-0.600836\pi\)
−0.311515 + 0.950241i \(0.600836\pi\)
\(12\) 0 0
\(13\) 3.18371 0.883002 0.441501 0.897261i \(-0.354446\pi\)
0.441501 + 0.897261i \(0.354446\pi\)
\(14\) 0 0
\(15\) 5.50615 1.42168
\(16\) 0 0
\(17\) 6.58249 1.59649 0.798245 0.602333i \(-0.205762\pi\)
0.798245 + 0.602333i \(0.205762\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) −5.74706 −1.25411
\(22\) 0 0
\(23\) 7.10283 1.48104 0.740522 0.672032i \(-0.234578\pi\)
0.740522 + 0.672032i \(0.234578\pi\)
\(24\) 0 0
\(25\) 9.37743 1.87549
\(26\) 0 0
\(27\) −5.65070 −1.08748
\(28\) 0 0
\(29\) −3.19207 −0.592752 −0.296376 0.955071i \(-0.595778\pi\)
−0.296376 + 0.955071i \(0.595778\pi\)
\(30\) 0 0
\(31\) 3.24708 0.583192 0.291596 0.956542i \(-0.405814\pi\)
0.291596 + 0.956542i \(0.405814\pi\)
\(32\) 0 0
\(33\) −3.00063 −0.522343
\(34\) 0 0
\(35\) −15.0065 −2.53656
\(36\) 0 0
\(37\) 0.364154 0.0598665 0.0299333 0.999552i \(-0.490471\pi\)
0.0299333 + 0.999552i \(0.490471\pi\)
\(38\) 0 0
\(39\) 4.62318 0.740301
\(40\) 0 0
\(41\) 11.3651 1.77493 0.887465 0.460876i \(-0.152465\pi\)
0.887465 + 0.460876i \(0.152465\pi\)
\(42\) 0 0
\(43\) −4.39395 −0.670071 −0.335035 0.942206i \(-0.608748\pi\)
−0.335035 + 0.942206i \(0.608748\pi\)
\(44\) 0 0
\(45\) −3.37959 −0.503800
\(46\) 0 0
\(47\) −4.46998 −0.652013 −0.326007 0.945367i \(-0.605703\pi\)
−0.326007 + 0.945367i \(0.605703\pi\)
\(48\) 0 0
\(49\) 8.66304 1.23758
\(50\) 0 0
\(51\) 9.55868 1.33848
\(52\) 0 0
\(53\) 4.70439 0.646198 0.323099 0.946365i \(-0.395275\pi\)
0.323099 + 0.946365i \(0.395275\pi\)
\(54\) 0 0
\(55\) −7.83513 −1.05649
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.3237 1.34404 0.672018 0.740535i \(-0.265428\pi\)
0.672018 + 0.740535i \(0.265428\pi\)
\(60\) 0 0
\(61\) −6.96631 −0.891944 −0.445972 0.895047i \(-0.647142\pi\)
−0.445972 + 0.895047i \(0.647142\pi\)
\(62\) 0 0
\(63\) 3.52745 0.444418
\(64\) 0 0
\(65\) 12.0719 1.49733
\(66\) 0 0
\(67\) −1.11636 −0.136385 −0.0681924 0.997672i \(-0.521723\pi\)
−0.0681924 + 0.997672i \(0.521723\pi\)
\(68\) 0 0
\(69\) 10.3143 1.24169
\(70\) 0 0
\(71\) 10.9421 1.29859 0.649295 0.760537i \(-0.275064\pi\)
0.649295 + 0.760537i \(0.275064\pi\)
\(72\) 0 0
\(73\) 1.44215 0.168791 0.0843956 0.996432i \(-0.473104\pi\)
0.0843956 + 0.996432i \(0.473104\pi\)
\(74\) 0 0
\(75\) 13.6173 1.57239
\(76\) 0 0
\(77\) 8.17793 0.931962
\(78\) 0 0
\(79\) −4.72706 −0.531836 −0.265918 0.963996i \(-0.585675\pi\)
−0.265918 + 0.963996i \(0.585675\pi\)
\(80\) 0 0
\(81\) −5.53169 −0.614632
\(82\) 0 0
\(83\) −4.04937 −0.444476 −0.222238 0.974992i \(-0.571336\pi\)
−0.222238 + 0.974992i \(0.571336\pi\)
\(84\) 0 0
\(85\) 24.9592 2.70721
\(86\) 0 0
\(87\) −4.63532 −0.496958
\(88\) 0 0
\(89\) 2.77258 0.293893 0.146947 0.989144i \(-0.453055\pi\)
0.146947 + 0.989144i \(0.453055\pi\)
\(90\) 0 0
\(91\) −12.6000 −1.32084
\(92\) 0 0
\(93\) 4.71520 0.488943
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14.3211 1.45409 0.727044 0.686591i \(-0.240894\pi\)
0.727044 + 0.686591i \(0.240894\pi\)
\(98\) 0 0
\(99\) 1.84174 0.185102
\(100\) 0 0
\(101\) 0.0483452 0.00481053 0.00240526 0.999997i \(-0.499234\pi\)
0.00240526 + 0.999997i \(0.499234\pi\)
\(102\) 0 0
\(103\) 19.5843 1.92970 0.964851 0.262797i \(-0.0846448\pi\)
0.964851 + 0.262797i \(0.0846448\pi\)
\(104\) 0 0
\(105\) −21.7915 −2.12663
\(106\) 0 0
\(107\) 0.554667 0.0536217 0.0268108 0.999641i \(-0.491465\pi\)
0.0268108 + 0.999641i \(0.491465\pi\)
\(108\) 0 0
\(109\) −11.2401 −1.07660 −0.538301 0.842752i \(-0.680934\pi\)
−0.538301 + 0.842752i \(0.680934\pi\)
\(110\) 0 0
\(111\) 0.528801 0.0501916
\(112\) 0 0
\(113\) 1.20277 0.113147 0.0565736 0.998398i \(-0.481982\pi\)
0.0565736 + 0.998398i \(0.481982\pi\)
\(114\) 0 0
\(115\) 26.9322 2.51144
\(116\) 0 0
\(117\) −2.83764 −0.262340
\(118\) 0 0
\(119\) −26.0512 −2.38811
\(120\) 0 0
\(121\) −6.73017 −0.611834
\(122\) 0 0
\(123\) 16.5037 1.48809
\(124\) 0 0
\(125\) 16.5982 1.48459
\(126\) 0 0
\(127\) −14.8301 −1.31596 −0.657978 0.753037i \(-0.728588\pi\)
−0.657978 + 0.753037i \(0.728588\pi\)
\(128\) 0 0
\(129\) −6.38061 −0.561781
\(130\) 0 0
\(131\) −1.36177 −0.118978 −0.0594891 0.998229i \(-0.518947\pi\)
−0.0594891 + 0.998229i \(0.518947\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −21.4261 −1.84406
\(136\) 0 0
\(137\) −13.9423 −1.19117 −0.595585 0.803292i \(-0.703080\pi\)
−0.595585 + 0.803292i \(0.703080\pi\)
\(138\) 0 0
\(139\) 2.72025 0.230729 0.115364 0.993323i \(-0.463196\pi\)
0.115364 + 0.993323i \(0.463196\pi\)
\(140\) 0 0
\(141\) −6.49102 −0.546642
\(142\) 0 0
\(143\) −6.57868 −0.550137
\(144\) 0 0
\(145\) −12.1035 −1.00515
\(146\) 0 0
\(147\) 12.5799 1.03757
\(148\) 0 0
\(149\) 6.55050 0.536637 0.268319 0.963330i \(-0.413532\pi\)
0.268319 + 0.963330i \(0.413532\pi\)
\(150\) 0 0
\(151\) 11.3481 0.923494 0.461747 0.887012i \(-0.347223\pi\)
0.461747 + 0.887012i \(0.347223\pi\)
\(152\) 0 0
\(153\) −5.86697 −0.474316
\(154\) 0 0
\(155\) 12.3121 0.988934
\(156\) 0 0
\(157\) −17.1978 −1.37254 −0.686269 0.727348i \(-0.740753\pi\)
−0.686269 + 0.727348i \(0.740753\pi\)
\(158\) 0 0
\(159\) 6.83142 0.541767
\(160\) 0 0
\(161\) −28.1106 −2.21542
\(162\) 0 0
\(163\) −17.0946 −1.33896 −0.669478 0.742832i \(-0.733482\pi\)
−0.669478 + 0.742832i \(0.733482\pi\)
\(164\) 0 0
\(165\) −11.3777 −0.885751
\(166\) 0 0
\(167\) 17.6013 1.36203 0.681016 0.732269i \(-0.261538\pi\)
0.681016 + 0.732269i \(0.261538\pi\)
\(168\) 0 0
\(169\) −2.86400 −0.220307
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 19.9418 1.51615 0.758073 0.652170i \(-0.226141\pi\)
0.758073 + 0.652170i \(0.226141\pi\)
\(174\) 0 0
\(175\) −37.1127 −2.80545
\(176\) 0 0
\(177\) 14.9915 1.12683
\(178\) 0 0
\(179\) 2.85313 0.213253 0.106626 0.994299i \(-0.465995\pi\)
0.106626 + 0.994299i \(0.465995\pi\)
\(180\) 0 0
\(181\) −18.0757 −1.34355 −0.671777 0.740753i \(-0.734469\pi\)
−0.671777 + 0.740753i \(0.734469\pi\)
\(182\) 0 0
\(183\) −10.1160 −0.747798
\(184\) 0 0
\(185\) 1.38078 0.101517
\(186\) 0 0
\(187\) −13.6018 −0.994661
\(188\) 0 0
\(189\) 22.3635 1.62671
\(190\) 0 0
\(191\) 15.8231 1.14492 0.572460 0.819933i \(-0.305989\pi\)
0.572460 + 0.819933i \(0.305989\pi\)
\(192\) 0 0
\(193\) −16.2193 −1.16749 −0.583745 0.811937i \(-0.698413\pi\)
−0.583745 + 0.811937i \(0.698413\pi\)
\(194\) 0 0
\(195\) 17.5300 1.25535
\(196\) 0 0
\(197\) −7.46439 −0.531816 −0.265908 0.963998i \(-0.585672\pi\)
−0.265908 + 0.963998i \(0.585672\pi\)
\(198\) 0 0
\(199\) −0.979896 −0.0694630 −0.0347315 0.999397i \(-0.511058\pi\)
−0.0347315 + 0.999397i \(0.511058\pi\)
\(200\) 0 0
\(201\) −1.62111 −0.114344
\(202\) 0 0
\(203\) 12.6331 0.886670
\(204\) 0 0
\(205\) 43.0937 3.00979
\(206\) 0 0
\(207\) −6.33075 −0.440017
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −11.6647 −0.803032 −0.401516 0.915852i \(-0.631517\pi\)
−0.401516 + 0.915852i \(0.631517\pi\)
\(212\) 0 0
\(213\) 15.8894 1.08873
\(214\) 0 0
\(215\) −16.6608 −1.13626
\(216\) 0 0
\(217\) −12.8508 −0.872370
\(218\) 0 0
\(219\) 2.09420 0.141513
\(220\) 0 0
\(221\) 20.9567 1.40970
\(222\) 0 0
\(223\) −26.4274 −1.76971 −0.884856 0.465865i \(-0.845743\pi\)
−0.884856 + 0.465865i \(0.845743\pi\)
\(224\) 0 0
\(225\) −8.35810 −0.557206
\(226\) 0 0
\(227\) −23.1268 −1.53498 −0.767491 0.641060i \(-0.778495\pi\)
−0.767491 + 0.641060i \(0.778495\pi\)
\(228\) 0 0
\(229\) −5.99359 −0.396068 −0.198034 0.980195i \(-0.563456\pi\)
−0.198034 + 0.980195i \(0.563456\pi\)
\(230\) 0 0
\(231\) 11.8755 0.781349
\(232\) 0 0
\(233\) −12.3459 −0.808805 −0.404403 0.914581i \(-0.632521\pi\)
−0.404403 + 0.914581i \(0.632521\pi\)
\(234\) 0 0
\(235\) −16.9491 −1.10564
\(236\) 0 0
\(237\) −6.86433 −0.445886
\(238\) 0 0
\(239\) −0.705772 −0.0456526 −0.0228263 0.999739i \(-0.507266\pi\)
−0.0228263 + 0.999739i \(0.507266\pi\)
\(240\) 0 0
\(241\) −25.3762 −1.63463 −0.817313 0.576195i \(-0.804537\pi\)
−0.817313 + 0.576195i \(0.804537\pi\)
\(242\) 0 0
\(243\) 8.91933 0.572175
\(244\) 0 0
\(245\) 32.8482 2.09859
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −5.88024 −0.372645
\(250\) 0 0
\(251\) 29.6381 1.87074 0.935370 0.353671i \(-0.115067\pi\)
0.935370 + 0.353671i \(0.115067\pi\)
\(252\) 0 0
\(253\) −14.6770 −0.922735
\(254\) 0 0
\(255\) 36.2442 2.26970
\(256\) 0 0
\(257\) −0.953128 −0.0594545 −0.0297272 0.999558i \(-0.509464\pi\)
−0.0297272 + 0.999558i \(0.509464\pi\)
\(258\) 0 0
\(259\) −1.44120 −0.0895516
\(260\) 0 0
\(261\) 2.84509 0.176106
\(262\) 0 0
\(263\) 9.65822 0.595551 0.297776 0.954636i \(-0.403755\pi\)
0.297776 + 0.954636i \(0.403755\pi\)
\(264\) 0 0
\(265\) 17.8379 1.09577
\(266\) 0 0
\(267\) 4.02617 0.246398
\(268\) 0 0
\(269\) 6.78406 0.413632 0.206816 0.978380i \(-0.433690\pi\)
0.206816 + 0.978380i \(0.433690\pi\)
\(270\) 0 0
\(271\) 9.00012 0.546719 0.273359 0.961912i \(-0.411865\pi\)
0.273359 + 0.961912i \(0.411865\pi\)
\(272\) 0 0
\(273\) −18.2970 −1.10738
\(274\) 0 0
\(275\) −19.3771 −1.16848
\(276\) 0 0
\(277\) −19.4125 −1.16639 −0.583193 0.812333i \(-0.698197\pi\)
−0.583193 + 0.812333i \(0.698197\pi\)
\(278\) 0 0
\(279\) −2.89412 −0.173266
\(280\) 0 0
\(281\) −0.218245 −0.0130194 −0.00650969 0.999979i \(-0.502072\pi\)
−0.00650969 + 0.999979i \(0.502072\pi\)
\(282\) 0 0
\(283\) −7.68891 −0.457058 −0.228529 0.973537i \(-0.573392\pi\)
−0.228529 + 0.973537i \(0.573392\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −44.9791 −2.65503
\(288\) 0 0
\(289\) 26.3292 1.54878
\(290\) 0 0
\(291\) 20.7962 1.21910
\(292\) 0 0
\(293\) 10.3008 0.601777 0.300889 0.953659i \(-0.402717\pi\)
0.300889 + 0.953659i \(0.402717\pi\)
\(294\) 0 0
\(295\) 39.1451 2.27912
\(296\) 0 0
\(297\) 11.6764 0.677531
\(298\) 0 0
\(299\) 22.6134 1.30776
\(300\) 0 0
\(301\) 17.3897 1.00233
\(302\) 0 0
\(303\) 0.0702038 0.00403310
\(304\) 0 0
\(305\) −26.4146 −1.51249
\(306\) 0 0
\(307\) −3.95460 −0.225701 −0.112850 0.993612i \(-0.535998\pi\)
−0.112850 + 0.993612i \(0.535998\pi\)
\(308\) 0 0
\(309\) 28.4391 1.61785
\(310\) 0 0
\(311\) 9.45362 0.536066 0.268033 0.963410i \(-0.413626\pi\)
0.268033 + 0.963410i \(0.413626\pi\)
\(312\) 0 0
\(313\) 15.3475 0.867492 0.433746 0.901035i \(-0.357192\pi\)
0.433746 + 0.901035i \(0.357192\pi\)
\(314\) 0 0
\(315\) 13.3753 0.753610
\(316\) 0 0
\(317\) 18.4012 1.03351 0.516757 0.856132i \(-0.327139\pi\)
0.516757 + 0.856132i \(0.327139\pi\)
\(318\) 0 0
\(319\) 6.59595 0.369302
\(320\) 0 0
\(321\) 0.805452 0.0449560
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 29.8550 1.65606
\(326\) 0 0
\(327\) −16.3221 −0.902615
\(328\) 0 0
\(329\) 17.6906 0.975316
\(330\) 0 0
\(331\) −24.1178 −1.32563 −0.662816 0.748782i \(-0.730639\pi\)
−0.662816 + 0.748782i \(0.730639\pi\)
\(332\) 0 0
\(333\) −0.324570 −0.0177863
\(334\) 0 0
\(335\) −4.23296 −0.231271
\(336\) 0 0
\(337\) 19.0198 1.03608 0.518038 0.855358i \(-0.326663\pi\)
0.518038 + 0.855358i \(0.326663\pi\)
\(338\) 0 0
\(339\) 1.74659 0.0948616
\(340\) 0 0
\(341\) −6.70962 −0.363346
\(342\) 0 0
\(343\) −6.58174 −0.355381
\(344\) 0 0
\(345\) 39.1093 2.10557
\(346\) 0 0
\(347\) −27.7287 −1.48856 −0.744278 0.667870i \(-0.767206\pi\)
−0.744278 + 0.667870i \(0.767206\pi\)
\(348\) 0 0
\(349\) 3.40561 0.182298 0.0911490 0.995837i \(-0.470946\pi\)
0.0911490 + 0.995837i \(0.470946\pi\)
\(350\) 0 0
\(351\) −17.9902 −0.960245
\(352\) 0 0
\(353\) 13.9944 0.744849 0.372425 0.928062i \(-0.378527\pi\)
0.372425 + 0.928062i \(0.378527\pi\)
\(354\) 0 0
\(355\) 41.4899 2.20205
\(356\) 0 0
\(357\) −37.8300 −2.00217
\(358\) 0 0
\(359\) 7.39821 0.390462 0.195231 0.980757i \(-0.437454\pi\)
0.195231 + 0.980757i \(0.437454\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −9.77313 −0.512956
\(364\) 0 0
\(365\) 5.46829 0.286223
\(366\) 0 0
\(367\) −16.6057 −0.866809 −0.433404 0.901200i \(-0.642688\pi\)
−0.433404 + 0.901200i \(0.642688\pi\)
\(368\) 0 0
\(369\) −10.1297 −0.527331
\(370\) 0 0
\(371\) −18.6184 −0.966617
\(372\) 0 0
\(373\) 14.8149 0.767084 0.383542 0.923523i \(-0.374704\pi\)
0.383542 + 0.923523i \(0.374704\pi\)
\(374\) 0 0
\(375\) 24.1028 1.24466
\(376\) 0 0
\(377\) −10.1626 −0.523401
\(378\) 0 0
\(379\) −0.782253 −0.0401817 −0.0200908 0.999798i \(-0.506396\pi\)
−0.0200908 + 0.999798i \(0.506396\pi\)
\(380\) 0 0
\(381\) −21.5353 −1.10329
\(382\) 0 0
\(383\) −15.4724 −0.790605 −0.395303 0.918551i \(-0.629360\pi\)
−0.395303 + 0.918551i \(0.629360\pi\)
\(384\) 0 0
\(385\) 31.0087 1.58035
\(386\) 0 0
\(387\) 3.91632 0.199078
\(388\) 0 0
\(389\) −5.32893 −0.270187 −0.135094 0.990833i \(-0.543134\pi\)
−0.135094 + 0.990833i \(0.543134\pi\)
\(390\) 0 0
\(391\) 46.7544 2.36447
\(392\) 0 0
\(393\) −1.97747 −0.0997503
\(394\) 0 0
\(395\) −17.9239 −0.901847
\(396\) 0 0
\(397\) −31.6126 −1.58659 −0.793295 0.608838i \(-0.791636\pi\)
−0.793295 + 0.608838i \(0.791636\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.49084 −0.473950 −0.236975 0.971516i \(-0.576156\pi\)
−0.236975 + 0.971516i \(0.576156\pi\)
\(402\) 0 0
\(403\) 10.3377 0.514960
\(404\) 0 0
\(405\) −20.9748 −1.04225
\(406\) 0 0
\(407\) −0.752472 −0.0372987
\(408\) 0 0
\(409\) −8.22153 −0.406529 −0.203264 0.979124i \(-0.565155\pi\)
−0.203264 + 0.979124i \(0.565155\pi\)
\(410\) 0 0
\(411\) −20.2461 −0.998667
\(412\) 0 0
\(413\) −40.8578 −2.01048
\(414\) 0 0
\(415\) −15.3542 −0.753709
\(416\) 0 0
\(417\) 3.95018 0.193441
\(418\) 0 0
\(419\) −21.6079 −1.05561 −0.527807 0.849365i \(-0.676985\pi\)
−0.527807 + 0.849365i \(0.676985\pi\)
\(420\) 0 0
\(421\) −1.24974 −0.0609085 −0.0304543 0.999536i \(-0.509695\pi\)
−0.0304543 + 0.999536i \(0.509695\pi\)
\(422\) 0 0
\(423\) 3.98409 0.193713
\(424\) 0 0
\(425\) 61.7269 2.99419
\(426\) 0 0
\(427\) 27.5702 1.33422
\(428\) 0 0
\(429\) −9.55314 −0.461230
\(430\) 0 0
\(431\) 5.07027 0.244226 0.122113 0.992516i \(-0.461033\pi\)
0.122113 + 0.992516i \(0.461033\pi\)
\(432\) 0 0
\(433\) −7.96323 −0.382688 −0.191344 0.981523i \(-0.561285\pi\)
−0.191344 + 0.981523i \(0.561285\pi\)
\(434\) 0 0
\(435\) −17.5760 −0.842705
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 18.2883 0.872851 0.436425 0.899740i \(-0.356244\pi\)
0.436425 + 0.899740i \(0.356244\pi\)
\(440\) 0 0
\(441\) −7.72136 −0.367684
\(442\) 0 0
\(443\) −14.1054 −0.670167 −0.335083 0.942188i \(-0.608765\pi\)
−0.335083 + 0.942188i \(0.608765\pi\)
\(444\) 0 0
\(445\) 10.5130 0.498362
\(446\) 0 0
\(447\) 9.51221 0.449912
\(448\) 0 0
\(449\) 15.3169 0.722850 0.361425 0.932401i \(-0.382290\pi\)
0.361425 + 0.932401i \(0.382290\pi\)
\(450\) 0 0
\(451\) −23.4843 −1.10583
\(452\) 0 0
\(453\) 16.4790 0.774249
\(454\) 0 0
\(455\) −47.7763 −2.23979
\(456\) 0 0
\(457\) −3.72346 −0.174176 −0.0870880 0.996201i \(-0.527756\pi\)
−0.0870880 + 0.996201i \(0.527756\pi\)
\(458\) 0 0
\(459\) −37.1957 −1.73615
\(460\) 0 0
\(461\) −7.80423 −0.363479 −0.181740 0.983347i \(-0.558173\pi\)
−0.181740 + 0.983347i \(0.558173\pi\)
\(462\) 0 0
\(463\) −31.8423 −1.47984 −0.739919 0.672696i \(-0.765136\pi\)
−0.739919 + 0.672696i \(0.765136\pi\)
\(464\) 0 0
\(465\) 17.8789 0.829114
\(466\) 0 0
\(467\) −36.1118 −1.67105 −0.835526 0.549450i \(-0.814837\pi\)
−0.835526 + 0.549450i \(0.814837\pi\)
\(468\) 0 0
\(469\) 4.41816 0.204012
\(470\) 0 0
\(471\) −24.9736 −1.15072
\(472\) 0 0
\(473\) 9.07946 0.417474
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −4.19302 −0.191985
\(478\) 0 0
\(479\) −18.9928 −0.867802 −0.433901 0.900960i \(-0.642863\pi\)
−0.433901 + 0.900960i \(0.642863\pi\)
\(480\) 0 0
\(481\) 1.15936 0.0528623
\(482\) 0 0
\(483\) −40.8204 −1.85739
\(484\) 0 0
\(485\) 54.3022 2.46574
\(486\) 0 0
\(487\) −5.40887 −0.245099 −0.122550 0.992462i \(-0.539107\pi\)
−0.122550 + 0.992462i \(0.539107\pi\)
\(488\) 0 0
\(489\) −24.8238 −1.12257
\(490\) 0 0
\(491\) −14.5310 −0.655773 −0.327886 0.944717i \(-0.606336\pi\)
−0.327886 + 0.944717i \(0.606336\pi\)
\(492\) 0 0
\(493\) −21.0118 −0.946322
\(494\) 0 0
\(495\) 6.98344 0.313882
\(496\) 0 0
\(497\) −43.3051 −1.94250
\(498\) 0 0
\(499\) −11.8269 −0.529446 −0.264723 0.964324i \(-0.585281\pi\)
−0.264723 + 0.964324i \(0.585281\pi\)
\(500\) 0 0
\(501\) 25.5595 1.14192
\(502\) 0 0
\(503\) 26.0673 1.16228 0.581141 0.813803i \(-0.302607\pi\)
0.581141 + 0.813803i \(0.302607\pi\)
\(504\) 0 0
\(505\) 0.183313 0.00815733
\(506\) 0 0
\(507\) −4.15891 −0.184704
\(508\) 0 0
\(509\) −15.3073 −0.678485 −0.339242 0.940699i \(-0.610171\pi\)
−0.339242 + 0.940699i \(0.610171\pi\)
\(510\) 0 0
\(511\) −5.70754 −0.252487
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 74.2591 3.27225
\(516\) 0 0
\(517\) 9.23657 0.406224
\(518\) 0 0
\(519\) 28.9582 1.27112
\(520\) 0 0
\(521\) −24.2492 −1.06238 −0.531188 0.847254i \(-0.678254\pi\)
−0.531188 + 0.847254i \(0.678254\pi\)
\(522\) 0 0
\(523\) 38.6783 1.69128 0.845642 0.533750i \(-0.179218\pi\)
0.845642 + 0.533750i \(0.179218\pi\)
\(524\) 0 0
\(525\) −53.8926 −2.35207
\(526\) 0 0
\(527\) 21.3739 0.931060
\(528\) 0 0
\(529\) 27.4503 1.19349
\(530\) 0 0
\(531\) −9.20154 −0.399313
\(532\) 0 0
\(533\) 36.1831 1.56727
\(534\) 0 0
\(535\) 2.10316 0.0909277
\(536\) 0 0
\(537\) 4.14313 0.178789
\(538\) 0 0
\(539\) −17.9009 −0.771048
\(540\) 0 0
\(541\) 12.3886 0.532629 0.266315 0.963886i \(-0.414194\pi\)
0.266315 + 0.963886i \(0.414194\pi\)
\(542\) 0 0
\(543\) −26.2484 −1.12643
\(544\) 0 0
\(545\) −42.6196 −1.82562
\(546\) 0 0
\(547\) −25.7067 −1.09914 −0.549570 0.835448i \(-0.685208\pi\)
−0.549570 + 0.835448i \(0.685208\pi\)
\(548\) 0 0
\(549\) 6.20906 0.264996
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 18.7081 0.795548
\(554\) 0 0
\(555\) 2.00509 0.0851112
\(556\) 0 0
\(557\) 43.9504 1.86224 0.931119 0.364715i \(-0.118834\pi\)
0.931119 + 0.364715i \(0.118834\pi\)
\(558\) 0 0
\(559\) −13.9890 −0.591674
\(560\) 0 0
\(561\) −19.7516 −0.833915
\(562\) 0 0
\(563\) −3.39837 −0.143224 −0.0716121 0.997433i \(-0.522814\pi\)
−0.0716121 + 0.997433i \(0.522814\pi\)
\(564\) 0 0
\(565\) 4.56062 0.191867
\(566\) 0 0
\(567\) 21.8925 0.919400
\(568\) 0 0
\(569\) −12.3585 −0.518097 −0.259049 0.965864i \(-0.583409\pi\)
−0.259049 + 0.965864i \(0.583409\pi\)
\(570\) 0 0
\(571\) −2.77755 −0.116237 −0.0581184 0.998310i \(-0.518510\pi\)
−0.0581184 + 0.998310i \(0.518510\pi\)
\(572\) 0 0
\(573\) 22.9773 0.959891
\(574\) 0 0
\(575\) 66.6064 2.77768
\(576\) 0 0
\(577\) 18.0762 0.752520 0.376260 0.926514i \(-0.377210\pi\)
0.376260 + 0.926514i \(0.377210\pi\)
\(578\) 0 0
\(579\) −23.5526 −0.978813
\(580\) 0 0
\(581\) 16.0260 0.664871
\(582\) 0 0
\(583\) −9.72095 −0.402601
\(584\) 0 0
\(585\) −10.7596 −0.444856
\(586\) 0 0
\(587\) −8.56572 −0.353545 −0.176773 0.984252i \(-0.556566\pi\)
−0.176773 + 0.984252i \(0.556566\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −10.8393 −0.445870
\(592\) 0 0
\(593\) −38.2809 −1.57201 −0.786004 0.618221i \(-0.787854\pi\)
−0.786004 + 0.618221i \(0.787854\pi\)
\(594\) 0 0
\(595\) −98.7800 −4.04959
\(596\) 0 0
\(597\) −1.42294 −0.0582372
\(598\) 0 0
\(599\) −6.37376 −0.260425 −0.130212 0.991486i \(-0.541566\pi\)
−0.130212 + 0.991486i \(0.541566\pi\)
\(600\) 0 0
\(601\) 12.2960 0.501564 0.250782 0.968044i \(-0.419312\pi\)
0.250782 + 0.968044i \(0.419312\pi\)
\(602\) 0 0
\(603\) 0.995009 0.0405199
\(604\) 0 0
\(605\) −25.5192 −1.03750
\(606\) 0 0
\(607\) −13.7106 −0.556497 −0.278248 0.960509i \(-0.589754\pi\)
−0.278248 + 0.960509i \(0.589754\pi\)
\(608\) 0 0
\(609\) 18.3450 0.743377
\(610\) 0 0
\(611\) −14.2311 −0.575729
\(612\) 0 0
\(613\) 42.4337 1.71388 0.856941 0.515414i \(-0.172362\pi\)
0.856941 + 0.515414i \(0.172362\pi\)
\(614\) 0 0
\(615\) 62.5779 2.52339
\(616\) 0 0
\(617\) −27.0083 −1.08731 −0.543656 0.839308i \(-0.682960\pi\)
−0.543656 + 0.839308i \(0.682960\pi\)
\(618\) 0 0
\(619\) −39.5183 −1.58838 −0.794188 0.607672i \(-0.792104\pi\)
−0.794188 + 0.607672i \(0.792104\pi\)
\(620\) 0 0
\(621\) −40.1360 −1.61060
\(622\) 0 0
\(623\) −10.9729 −0.439621
\(624\) 0 0
\(625\) 16.0491 0.641963
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.39704 0.0955763
\(630\) 0 0
\(631\) 37.6515 1.49888 0.749441 0.662071i \(-0.230322\pi\)
0.749441 + 0.662071i \(0.230322\pi\)
\(632\) 0 0
\(633\) −16.9388 −0.673255
\(634\) 0 0
\(635\) −56.2321 −2.23150
\(636\) 0 0
\(637\) 27.5806 1.09278
\(638\) 0 0
\(639\) −9.75270 −0.385811
\(640\) 0 0
\(641\) 21.6697 0.855900 0.427950 0.903802i \(-0.359236\pi\)
0.427950 + 0.903802i \(0.359236\pi\)
\(642\) 0 0
\(643\) 35.9395 1.41731 0.708657 0.705553i \(-0.249301\pi\)
0.708657 + 0.705553i \(0.249301\pi\)
\(644\) 0 0
\(645\) −24.1937 −0.952627
\(646\) 0 0
\(647\) 0.915638 0.0359974 0.0179987 0.999838i \(-0.494271\pi\)
0.0179987 + 0.999838i \(0.494271\pi\)
\(648\) 0 0
\(649\) −21.3325 −0.837375
\(650\) 0 0
\(651\) −18.6611 −0.731388
\(652\) 0 0
\(653\) 13.9357 0.545346 0.272673 0.962107i \(-0.412092\pi\)
0.272673 + 0.962107i \(0.412092\pi\)
\(654\) 0 0
\(655\) −5.16349 −0.201754
\(656\) 0 0
\(657\) −1.28539 −0.0501478
\(658\) 0 0
\(659\) −43.2164 −1.68347 −0.841736 0.539890i \(-0.818466\pi\)
−0.841736 + 0.539890i \(0.818466\pi\)
\(660\) 0 0
\(661\) 9.81904 0.381916 0.190958 0.981598i \(-0.438841\pi\)
0.190958 + 0.981598i \(0.438841\pi\)
\(662\) 0 0
\(663\) 30.4321 1.18188
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −22.6727 −0.877892
\(668\) 0 0
\(669\) −38.3762 −1.48371
\(670\) 0 0
\(671\) 14.3949 0.555708
\(672\) 0 0
\(673\) 11.0877 0.427399 0.213699 0.976899i \(-0.431449\pi\)
0.213699 + 0.976899i \(0.431449\pi\)
\(674\) 0 0
\(675\) −52.9890 −2.03955
\(676\) 0 0
\(677\) −36.1996 −1.39126 −0.695632 0.718398i \(-0.744876\pi\)
−0.695632 + 0.718398i \(0.744876\pi\)
\(678\) 0 0
\(679\) −56.6780 −2.17510
\(680\) 0 0
\(681\) −33.5833 −1.28692
\(682\) 0 0
\(683\) 45.4612 1.73953 0.869763 0.493470i \(-0.164272\pi\)
0.869763 + 0.493470i \(0.164272\pi\)
\(684\) 0 0
\(685\) −52.8658 −2.01990
\(686\) 0 0
\(687\) −8.70351 −0.332060
\(688\) 0 0
\(689\) 14.9774 0.570594
\(690\) 0 0
\(691\) −11.0639 −0.420890 −0.210445 0.977606i \(-0.567491\pi\)
−0.210445 + 0.977606i \(0.567491\pi\)
\(692\) 0 0
\(693\) −7.28898 −0.276885
\(694\) 0 0
\(695\) 10.3145 0.391253
\(696\) 0 0
\(697\) 74.8106 2.83366
\(698\) 0 0
\(699\) −17.9279 −0.678095
\(700\) 0 0
\(701\) −26.8397 −1.01372 −0.506861 0.862028i \(-0.669194\pi\)
−0.506861 + 0.862028i \(0.669194\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −24.6124 −0.926956
\(706\) 0 0
\(707\) −0.191334 −0.00719584
\(708\) 0 0
\(709\) 27.2769 1.02440 0.512202 0.858865i \(-0.328830\pi\)
0.512202 + 0.858865i \(0.328830\pi\)
\(710\) 0 0
\(711\) 4.21322 0.158008
\(712\) 0 0
\(713\) 23.0634 0.863733
\(714\) 0 0
\(715\) −24.9448 −0.932881
\(716\) 0 0
\(717\) −1.02488 −0.0382747
\(718\) 0 0
\(719\) 4.39717 0.163987 0.0819933 0.996633i \(-0.473871\pi\)
0.0819933 + 0.996633i \(0.473871\pi\)
\(720\) 0 0
\(721\) −77.5081 −2.88655
\(722\) 0 0
\(723\) −36.8497 −1.37046
\(724\) 0 0
\(725\) −29.9334 −1.11170
\(726\) 0 0
\(727\) 0.801638 0.0297311 0.0148656 0.999890i \(-0.495268\pi\)
0.0148656 + 0.999890i \(0.495268\pi\)
\(728\) 0 0
\(729\) 29.5471 1.09434
\(730\) 0 0
\(731\) −28.9231 −1.06976
\(732\) 0 0
\(733\) −39.0667 −1.44296 −0.721480 0.692435i \(-0.756538\pi\)
−0.721480 + 0.692435i \(0.756538\pi\)
\(734\) 0 0
\(735\) 47.7000 1.75944
\(736\) 0 0
\(737\) 2.30680 0.0849719
\(738\) 0 0
\(739\) 33.0869 1.21712 0.608562 0.793507i \(-0.291747\pi\)
0.608562 + 0.793507i \(0.291747\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17.8634 −0.655345 −0.327672 0.944791i \(-0.606264\pi\)
−0.327672 + 0.944791i \(0.606264\pi\)
\(744\) 0 0
\(745\) 24.8379 0.909990
\(746\) 0 0
\(747\) 3.60920 0.132054
\(748\) 0 0
\(749\) −2.19518 −0.0802102
\(750\) 0 0
\(751\) 29.7141 1.08428 0.542141 0.840287i \(-0.317614\pi\)
0.542141 + 0.840287i \(0.317614\pi\)
\(752\) 0 0
\(753\) 43.0386 1.56841
\(754\) 0 0
\(755\) 43.0292 1.56599
\(756\) 0 0
\(757\) 21.5838 0.784476 0.392238 0.919864i \(-0.371701\pi\)
0.392238 + 0.919864i \(0.371701\pi\)
\(758\) 0 0
\(759\) −21.3130 −0.773613
\(760\) 0 0
\(761\) −21.2021 −0.768574 −0.384287 0.923214i \(-0.625553\pi\)
−0.384287 + 0.923214i \(0.625553\pi\)
\(762\) 0 0
\(763\) 44.4843 1.61044
\(764\) 0 0
\(765\) −22.2461 −0.804311
\(766\) 0 0
\(767\) 32.8678 1.18679
\(768\) 0 0
\(769\) −3.91027 −0.141008 −0.0705040 0.997511i \(-0.522461\pi\)
−0.0705040 + 0.997511i \(0.522461\pi\)
\(770\) 0 0
\(771\) −1.38407 −0.0498461
\(772\) 0 0
\(773\) 5.45337 0.196144 0.0980720 0.995179i \(-0.468732\pi\)
0.0980720 + 0.995179i \(0.468732\pi\)
\(774\) 0 0
\(775\) 30.4492 1.09377
\(776\) 0 0
\(777\) −2.09281 −0.0750793
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −22.6103 −0.809061
\(782\) 0 0
\(783\) 18.0374 0.644604
\(784\) 0 0
\(785\) −65.2101 −2.32745
\(786\) 0 0
\(787\) 39.6644 1.41388 0.706941 0.707272i \(-0.250074\pi\)
0.706941 + 0.707272i \(0.250074\pi\)
\(788\) 0 0
\(789\) 14.0250 0.499305
\(790\) 0 0
\(791\) −4.76015 −0.169252
\(792\) 0 0
\(793\) −22.1787 −0.787589
\(794\) 0 0
\(795\) 25.9031 0.918688
\(796\) 0 0
\(797\) 30.4396 1.07823 0.539113 0.842233i \(-0.318760\pi\)
0.539113 + 0.842233i \(0.318760\pi\)
\(798\) 0 0
\(799\) −29.4236 −1.04093
\(800\) 0 0
\(801\) −2.47120 −0.0873156
\(802\) 0 0
\(803\) −2.98000 −0.105162
\(804\) 0 0
\(805\) −106.589 −3.75675
\(806\) 0 0
\(807\) 9.85139 0.346785
\(808\) 0 0
\(809\) 31.9492 1.12327 0.561637 0.827384i \(-0.310172\pi\)
0.561637 + 0.827384i \(0.310172\pi\)
\(810\) 0 0
\(811\) −31.2468 −1.09722 −0.548612 0.836077i \(-0.684843\pi\)
−0.548612 + 0.836077i \(0.684843\pi\)
\(812\) 0 0
\(813\) 13.0694 0.458364
\(814\) 0 0
\(815\) −64.8188 −2.27050
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 11.2304 0.392422
\(820\) 0 0
\(821\) 24.5387 0.856405 0.428203 0.903683i \(-0.359147\pi\)
0.428203 + 0.903683i \(0.359147\pi\)
\(822\) 0 0
\(823\) 35.6092 1.24126 0.620630 0.784104i \(-0.286877\pi\)
0.620630 + 0.784104i \(0.286877\pi\)
\(824\) 0 0
\(825\) −28.1382 −0.979648
\(826\) 0 0
\(827\) 4.91861 0.171037 0.0855184 0.996337i \(-0.472745\pi\)
0.0855184 + 0.996337i \(0.472745\pi\)
\(828\) 0 0
\(829\) 21.5808 0.749532 0.374766 0.927119i \(-0.377723\pi\)
0.374766 + 0.927119i \(0.377723\pi\)
\(830\) 0 0
\(831\) −28.1897 −0.977889
\(832\) 0 0
\(833\) 57.0244 1.97578
\(834\) 0 0
\(835\) 66.7400 2.30963
\(836\) 0 0
\(837\) −18.3482 −0.634208
\(838\) 0 0
\(839\) 51.0772 1.76338 0.881691 0.471827i \(-0.156405\pi\)
0.881691 + 0.471827i \(0.156405\pi\)
\(840\) 0 0
\(841\) −18.8107 −0.648645
\(842\) 0 0
\(843\) −0.316921 −0.0109153
\(844\) 0 0
\(845\) −10.8596 −0.373581
\(846\) 0 0
\(847\) 26.6357 0.915213
\(848\) 0 0
\(849\) −11.1653 −0.383194
\(850\) 0 0
\(851\) 2.58653 0.0886650
\(852\) 0 0
\(853\) −30.2837 −1.03689 −0.518447 0.855110i \(-0.673490\pi\)
−0.518447 + 0.855110i \(0.673490\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −39.2037 −1.33917 −0.669586 0.742735i \(-0.733528\pi\)
−0.669586 + 0.742735i \(0.733528\pi\)
\(858\) 0 0
\(859\) 34.6728 1.18302 0.591510 0.806298i \(-0.298532\pi\)
0.591510 + 0.806298i \(0.298532\pi\)
\(860\) 0 0
\(861\) −65.3158 −2.22596
\(862\) 0 0
\(863\) 1.08878 0.0370624 0.0185312 0.999828i \(-0.494101\pi\)
0.0185312 + 0.999828i \(0.494101\pi\)
\(864\) 0 0
\(865\) 75.6144 2.57097
\(866\) 0 0
\(867\) 38.2336 1.29848
\(868\) 0 0
\(869\) 9.76779 0.331350
\(870\) 0 0
\(871\) −3.55416 −0.120428
\(872\) 0 0
\(873\) −12.7644 −0.432009
\(874\) 0 0
\(875\) −65.6898 −2.22072
\(876\) 0 0
\(877\) 13.4413 0.453882 0.226941 0.973909i \(-0.427128\pi\)
0.226941 + 0.973909i \(0.427128\pi\)
\(878\) 0 0
\(879\) 14.9581 0.504525
\(880\) 0 0
\(881\) −40.0708 −1.35002 −0.675010 0.737809i \(-0.735861\pi\)
−0.675010 + 0.737809i \(0.735861\pi\)
\(882\) 0 0
\(883\) −37.4146 −1.25910 −0.629551 0.776959i \(-0.716761\pi\)
−0.629551 + 0.776959i \(0.716761\pi\)
\(884\) 0 0
\(885\) 56.8441 1.91079
\(886\) 0 0
\(887\) −2.70328 −0.0907674 −0.0453837 0.998970i \(-0.514451\pi\)
−0.0453837 + 0.998970i \(0.514451\pi\)
\(888\) 0 0
\(889\) 58.6923 1.96848
\(890\) 0 0
\(891\) 11.4304 0.382934
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 10.8184 0.361619
\(896\) 0 0
\(897\) 32.8377 1.09642
\(898\) 0 0
\(899\) −10.3649 −0.345688
\(900\) 0 0
\(901\) 30.9666 1.03165
\(902\) 0 0
\(903\) 25.2523 0.840343
\(904\) 0 0
\(905\) −68.5386 −2.27830
\(906\) 0 0
\(907\) 35.8898 1.19170 0.595850 0.803096i \(-0.296815\pi\)
0.595850 + 0.803096i \(0.296815\pi\)
\(908\) 0 0
\(909\) −0.0430900 −0.00142921
\(910\) 0 0
\(911\) −27.3039 −0.904617 −0.452309 0.891861i \(-0.649399\pi\)
−0.452309 + 0.891861i \(0.649399\pi\)
\(912\) 0 0
\(913\) 8.36744 0.276922
\(914\) 0 0
\(915\) −38.3575 −1.26806
\(916\) 0 0
\(917\) 5.38941 0.177974
\(918\) 0 0
\(919\) 29.0584 0.958547 0.479273 0.877666i \(-0.340900\pi\)
0.479273 + 0.877666i \(0.340900\pi\)
\(920\) 0 0
\(921\) −5.74261 −0.189226
\(922\) 0 0
\(923\) 34.8365 1.14666
\(924\) 0 0
\(925\) 3.41483 0.112279
\(926\) 0 0
\(927\) −17.4555 −0.573314
\(928\) 0 0
\(929\) 8.78904 0.288359 0.144179 0.989552i \(-0.453946\pi\)
0.144179 + 0.989552i \(0.453946\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 13.7280 0.449433
\(934\) 0 0
\(935\) −51.5747 −1.68667
\(936\) 0 0
\(937\) −28.9746 −0.946560 −0.473280 0.880912i \(-0.656930\pi\)
−0.473280 + 0.880912i \(0.656930\pi\)
\(938\) 0 0
\(939\) 22.2867 0.727298
\(940\) 0 0
\(941\) −59.8921 −1.95243 −0.976213 0.216814i \(-0.930433\pi\)
−0.976213 + 0.216814i \(0.930433\pi\)
\(942\) 0 0
\(943\) 80.7244 2.62875
\(944\) 0 0
\(945\) 84.7971 2.75845
\(946\) 0 0
\(947\) −9.88241 −0.321135 −0.160568 0.987025i \(-0.551332\pi\)
−0.160568 + 0.987025i \(0.551332\pi\)
\(948\) 0 0
\(949\) 4.59139 0.149043
\(950\) 0 0
\(951\) 26.7210 0.866489
\(952\) 0 0
\(953\) −34.9048 −1.13068 −0.565339 0.824859i \(-0.691255\pi\)
−0.565339 + 0.824859i \(0.691255\pi\)
\(954\) 0 0
\(955\) 59.9974 1.94147
\(956\) 0 0
\(957\) 9.57822 0.309620
\(958\) 0 0
\(959\) 55.1788 1.78182
\(960\) 0 0
\(961\) −20.4565 −0.659887
\(962\) 0 0
\(963\) −0.494374 −0.0159310
\(964\) 0 0
\(965\) −61.4996 −1.97974
\(966\) 0 0
\(967\) 48.5434 1.56105 0.780525 0.625125i \(-0.214952\pi\)
0.780525 + 0.625125i \(0.214952\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −38.2627 −1.22791 −0.613955 0.789341i \(-0.710422\pi\)
−0.613955 + 0.789341i \(0.710422\pi\)
\(972\) 0 0
\(973\) −10.7658 −0.345137
\(974\) 0 0
\(975\) 43.3536 1.38843
\(976\) 0 0
\(977\) 28.1346 0.900105 0.450052 0.893002i \(-0.351405\pi\)
0.450052 + 0.893002i \(0.351405\pi\)
\(978\) 0 0
\(979\) −5.72915 −0.183104
\(980\) 0 0
\(981\) 10.0183 0.319858
\(982\) 0 0
\(983\) −15.3684 −0.490175 −0.245087 0.969501i \(-0.578817\pi\)
−0.245087 + 0.969501i \(0.578817\pi\)
\(984\) 0 0
\(985\) −28.3032 −0.901814
\(986\) 0 0
\(987\) 25.6892 0.817697
\(988\) 0 0
\(989\) −31.2095 −0.992404
\(990\) 0 0
\(991\) −5.33357 −0.169426 −0.0847132 0.996405i \(-0.526997\pi\)
−0.0847132 + 0.996405i \(0.526997\pi\)
\(992\) 0 0
\(993\) −35.0223 −1.11140
\(994\) 0 0
\(995\) −3.71553 −0.117790
\(996\) 0 0
\(997\) −25.7143 −0.814379 −0.407190 0.913344i \(-0.633491\pi\)
−0.407190 + 0.913344i \(0.633491\pi\)
\(998\) 0 0
\(999\) −2.05772 −0.0651035
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.u.1.4 yes 6
4.3 odd 2 5776.2.a.bx.1.3 6
19.18 odd 2 2888.2.a.t.1.3 6
76.75 even 2 5776.2.a.bz.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2888.2.a.t.1.3 6 19.18 odd 2
2888.2.a.u.1.4 yes 6 1.1 even 1 trivial
5776.2.a.bx.1.3 6 4.3 odd 2
5776.2.a.bz.1.4 6 76.75 even 2