Properties

Label 2888.2.a.u.1.2
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,3,0,2,0,-2,0,9,0,-5,0,10,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.3022625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 7x^{3} + 17x^{2} + 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.20509\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.60721 q^{3} -1.92601 q^{5} -1.29923 q^{7} -0.416870 q^{9} +0.117638 q^{11} -4.82577 q^{13} +3.09551 q^{15} -0.303846 q^{17} +2.08814 q^{21} -7.09885 q^{23} -1.29047 q^{25} +5.49163 q^{27} -7.89441 q^{29} -3.59384 q^{31} -0.189069 q^{33} +2.50234 q^{35} +11.4330 q^{37} +7.75603 q^{39} +3.52989 q^{41} -10.9416 q^{43} +0.802897 q^{45} +2.01544 q^{47} -5.31200 q^{49} +0.488346 q^{51} +5.57974 q^{53} -0.226572 q^{55} -12.3618 q^{59} +1.99203 q^{61} +0.541610 q^{63} +9.29450 q^{65} -7.48284 q^{67} +11.4093 q^{69} +4.45670 q^{71} +0.674509 q^{73} +2.07406 q^{75} -0.152839 q^{77} +6.16749 q^{79} -7.57561 q^{81} -15.4114 q^{83} +0.585213 q^{85} +12.6880 q^{87} -3.52733 q^{89} +6.26979 q^{91} +5.77605 q^{93} +15.9117 q^{97} -0.0490397 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} + 2 q^{5} - 2 q^{7} + 9 q^{9} - 5 q^{11} + 10 q^{13} + 4 q^{17} + 23 q^{21} - 15 q^{23} + 12 q^{25} + 18 q^{27} - 7 q^{29} + 5 q^{31} - q^{33} - 38 q^{35} + 17 q^{37} + 37 q^{39} + 4 q^{41}+ \cdots - 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.60721 −0.927924 −0.463962 0.885855i \(-0.653573\pi\)
−0.463962 + 0.885855i \(0.653573\pi\)
\(4\) 0 0
\(5\) −1.92601 −0.861340 −0.430670 0.902510i \(-0.641723\pi\)
−0.430670 + 0.902510i \(0.641723\pi\)
\(6\) 0 0
\(7\) −1.29923 −0.491063 −0.245532 0.969389i \(-0.578963\pi\)
−0.245532 + 0.969389i \(0.578963\pi\)
\(8\) 0 0
\(9\) −0.416870 −0.138957
\(10\) 0 0
\(11\) 0.117638 0.0354692 0.0177346 0.999843i \(-0.494355\pi\)
0.0177346 + 0.999843i \(0.494355\pi\)
\(12\) 0 0
\(13\) −4.82577 −1.33843 −0.669214 0.743070i \(-0.733369\pi\)
−0.669214 + 0.743070i \(0.733369\pi\)
\(14\) 0 0
\(15\) 3.09551 0.799258
\(16\) 0 0
\(17\) −0.303846 −0.0736936 −0.0368468 0.999321i \(-0.511731\pi\)
−0.0368468 + 0.999321i \(0.511731\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 2.08814 0.455670
\(22\) 0 0
\(23\) −7.09885 −1.48021 −0.740106 0.672490i \(-0.765225\pi\)
−0.740106 + 0.672490i \(0.765225\pi\)
\(24\) 0 0
\(25\) −1.29047 −0.258094
\(26\) 0 0
\(27\) 5.49163 1.05687
\(28\) 0 0
\(29\) −7.89441 −1.46596 −0.732978 0.680253i \(-0.761870\pi\)
−0.732978 + 0.680253i \(0.761870\pi\)
\(30\) 0 0
\(31\) −3.59384 −0.645472 −0.322736 0.946489i \(-0.604603\pi\)
−0.322736 + 0.946489i \(0.604603\pi\)
\(32\) 0 0
\(33\) −0.189069 −0.0329127
\(34\) 0 0
\(35\) 2.50234 0.422972
\(36\) 0 0
\(37\) 11.4330 1.87957 0.939785 0.341765i \(-0.111025\pi\)
0.939785 + 0.341765i \(0.111025\pi\)
\(38\) 0 0
\(39\) 7.75603 1.24196
\(40\) 0 0
\(41\) 3.52989 0.551277 0.275638 0.961261i \(-0.411111\pi\)
0.275638 + 0.961261i \(0.411111\pi\)
\(42\) 0 0
\(43\) −10.9416 −1.66859 −0.834293 0.551322i \(-0.814124\pi\)
−0.834293 + 0.551322i \(0.814124\pi\)
\(44\) 0 0
\(45\) 0.802897 0.119689
\(46\) 0 0
\(47\) 2.01544 0.293982 0.146991 0.989138i \(-0.453041\pi\)
0.146991 + 0.989138i \(0.453041\pi\)
\(48\) 0 0
\(49\) −5.31200 −0.758857
\(50\) 0 0
\(51\) 0.488346 0.0683821
\(52\) 0 0
\(53\) 5.57974 0.766437 0.383218 0.923658i \(-0.374816\pi\)
0.383218 + 0.923658i \(0.374816\pi\)
\(54\) 0 0
\(55\) −0.226572 −0.0305510
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.3618 −1.60938 −0.804688 0.593698i \(-0.797667\pi\)
−0.804688 + 0.593698i \(0.797667\pi\)
\(60\) 0 0
\(61\) 1.99203 0.255053 0.127527 0.991835i \(-0.459296\pi\)
0.127527 + 0.991835i \(0.459296\pi\)
\(62\) 0 0
\(63\) 0.541610 0.0682365
\(64\) 0 0
\(65\) 9.29450 1.15284
\(66\) 0 0
\(67\) −7.48284 −0.914175 −0.457087 0.889422i \(-0.651107\pi\)
−0.457087 + 0.889422i \(0.651107\pi\)
\(68\) 0 0
\(69\) 11.4093 1.37352
\(70\) 0 0
\(71\) 4.45670 0.528913 0.264456 0.964398i \(-0.414807\pi\)
0.264456 + 0.964398i \(0.414807\pi\)
\(72\) 0 0
\(73\) 0.674509 0.0789454 0.0394727 0.999221i \(-0.487432\pi\)
0.0394727 + 0.999221i \(0.487432\pi\)
\(74\) 0 0
\(75\) 2.07406 0.239492
\(76\) 0 0
\(77\) −0.152839 −0.0174176
\(78\) 0 0
\(79\) 6.16749 0.693897 0.346948 0.937884i \(-0.387218\pi\)
0.346948 + 0.937884i \(0.387218\pi\)
\(80\) 0 0
\(81\) −7.57561 −0.841734
\(82\) 0 0
\(83\) −15.4114 −1.69162 −0.845811 0.533483i \(-0.820883\pi\)
−0.845811 + 0.533483i \(0.820883\pi\)
\(84\) 0 0
\(85\) 0.585213 0.0634752
\(86\) 0 0
\(87\) 12.6880 1.36030
\(88\) 0 0
\(89\) −3.52733 −0.373896 −0.186948 0.982370i \(-0.559860\pi\)
−0.186948 + 0.982370i \(0.559860\pi\)
\(90\) 0 0
\(91\) 6.26979 0.657253
\(92\) 0 0
\(93\) 5.77605 0.598949
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 15.9117 1.61559 0.807796 0.589462i \(-0.200660\pi\)
0.807796 + 0.589462i \(0.200660\pi\)
\(98\) 0 0
\(99\) −0.0490397 −0.00492868
\(100\) 0 0
\(101\) 15.9596 1.58804 0.794019 0.607892i \(-0.207985\pi\)
0.794019 + 0.607892i \(0.207985\pi\)
\(102\) 0 0
\(103\) 10.6260 1.04701 0.523506 0.852022i \(-0.324624\pi\)
0.523506 + 0.852022i \(0.324624\pi\)
\(104\) 0 0
\(105\) −4.02179 −0.392486
\(106\) 0 0
\(107\) −0.613900 −0.0593480 −0.0296740 0.999560i \(-0.509447\pi\)
−0.0296740 + 0.999560i \(0.509447\pi\)
\(108\) 0 0
\(109\) 1.38519 0.132677 0.0663386 0.997797i \(-0.478868\pi\)
0.0663386 + 0.997797i \(0.478868\pi\)
\(110\) 0 0
\(111\) −18.3752 −1.74410
\(112\) 0 0
\(113\) 15.1567 1.42582 0.712910 0.701256i \(-0.247377\pi\)
0.712910 + 0.701256i \(0.247377\pi\)
\(114\) 0 0
\(115\) 13.6725 1.27497
\(116\) 0 0
\(117\) 2.01172 0.185983
\(118\) 0 0
\(119\) 0.394767 0.0361882
\(120\) 0 0
\(121\) −10.9862 −0.998742
\(122\) 0 0
\(123\) −5.67329 −0.511543
\(124\) 0 0
\(125\) 12.1155 1.08365
\(126\) 0 0
\(127\) 22.0161 1.95361 0.976804 0.214134i \(-0.0686928\pi\)
0.976804 + 0.214134i \(0.0686928\pi\)
\(128\) 0 0
\(129\) 17.5855 1.54832
\(130\) 0 0
\(131\) −5.32883 −0.465582 −0.232791 0.972527i \(-0.574786\pi\)
−0.232791 + 0.972527i \(0.574786\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −10.5770 −0.910320
\(136\) 0 0
\(137\) 7.21231 0.616189 0.308094 0.951356i \(-0.400309\pi\)
0.308094 + 0.951356i \(0.400309\pi\)
\(138\) 0 0
\(139\) −3.94638 −0.334727 −0.167364 0.985895i \(-0.553525\pi\)
−0.167364 + 0.985895i \(0.553525\pi\)
\(140\) 0 0
\(141\) −3.23923 −0.272793
\(142\) 0 0
\(143\) −0.567694 −0.0474729
\(144\) 0 0
\(145\) 15.2047 1.26269
\(146\) 0 0
\(147\) 8.53750 0.704162
\(148\) 0 0
\(149\) −14.6664 −1.20152 −0.600758 0.799431i \(-0.705135\pi\)
−0.600758 + 0.799431i \(0.705135\pi\)
\(150\) 0 0
\(151\) −2.89903 −0.235919 −0.117960 0.993018i \(-0.537635\pi\)
−0.117960 + 0.993018i \(0.537635\pi\)
\(152\) 0 0
\(153\) 0.126664 0.0102402
\(154\) 0 0
\(155\) 6.92178 0.555971
\(156\) 0 0
\(157\) 2.42840 0.193807 0.0969036 0.995294i \(-0.469106\pi\)
0.0969036 + 0.995294i \(0.469106\pi\)
\(158\) 0 0
\(159\) −8.96783 −0.711195
\(160\) 0 0
\(161\) 9.22305 0.726878
\(162\) 0 0
\(163\) −21.0505 −1.64880 −0.824401 0.566006i \(-0.808488\pi\)
−0.824401 + 0.566006i \(0.808488\pi\)
\(164\) 0 0
\(165\) 0.364150 0.0283490
\(166\) 0 0
\(167\) −4.90304 −0.379409 −0.189704 0.981841i \(-0.560753\pi\)
−0.189704 + 0.981841i \(0.560753\pi\)
\(168\) 0 0
\(169\) 10.2881 0.791389
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.74381 −0.208608 −0.104304 0.994545i \(-0.533262\pi\)
−0.104304 + 0.994545i \(0.533262\pi\)
\(174\) 0 0
\(175\) 1.67662 0.126741
\(176\) 0 0
\(177\) 19.8681 1.49338
\(178\) 0 0
\(179\) −10.5355 −0.787459 −0.393729 0.919226i \(-0.628815\pi\)
−0.393729 + 0.919226i \(0.628815\pi\)
\(180\) 0 0
\(181\) −17.3422 −1.28904 −0.644520 0.764588i \(-0.722943\pi\)
−0.644520 + 0.764588i \(0.722943\pi\)
\(182\) 0 0
\(183\) −3.20161 −0.236670
\(184\) 0 0
\(185\) −22.0201 −1.61895
\(186\) 0 0
\(187\) −0.0357439 −0.00261385
\(188\) 0 0
\(189\) −7.13491 −0.518988
\(190\) 0 0
\(191\) 22.5239 1.62978 0.814888 0.579619i \(-0.196799\pi\)
0.814888 + 0.579619i \(0.196799\pi\)
\(192\) 0 0
\(193\) 20.6399 1.48569 0.742847 0.669461i \(-0.233475\pi\)
0.742847 + 0.669461i \(0.233475\pi\)
\(194\) 0 0
\(195\) −14.9382 −1.06975
\(196\) 0 0
\(197\) 12.7825 0.910714 0.455357 0.890309i \(-0.349512\pi\)
0.455357 + 0.890309i \(0.349512\pi\)
\(198\) 0 0
\(199\) 21.1578 1.49983 0.749917 0.661532i \(-0.230093\pi\)
0.749917 + 0.661532i \(0.230093\pi\)
\(200\) 0 0
\(201\) 12.0265 0.848285
\(202\) 0 0
\(203\) 10.2567 0.719877
\(204\) 0 0
\(205\) −6.79862 −0.474836
\(206\) 0 0
\(207\) 2.95929 0.205685
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 4.94760 0.340607 0.170304 0.985392i \(-0.445525\pi\)
0.170304 + 0.985392i \(0.445525\pi\)
\(212\) 0 0
\(213\) −7.16286 −0.490791
\(214\) 0 0
\(215\) 21.0738 1.43722
\(216\) 0 0
\(217\) 4.66923 0.316968
\(218\) 0 0
\(219\) −1.08408 −0.0732553
\(220\) 0 0
\(221\) 1.46629 0.0986335
\(222\) 0 0
\(223\) 0.339870 0.0227594 0.0113797 0.999935i \(-0.496378\pi\)
0.0113797 + 0.999935i \(0.496378\pi\)
\(224\) 0 0
\(225\) 0.537958 0.0358639
\(226\) 0 0
\(227\) 23.4864 1.55885 0.779424 0.626497i \(-0.215512\pi\)
0.779424 + 0.626497i \(0.215512\pi\)
\(228\) 0 0
\(229\) 10.2451 0.677014 0.338507 0.940964i \(-0.390078\pi\)
0.338507 + 0.940964i \(0.390078\pi\)
\(230\) 0 0
\(231\) 0.245645 0.0161622
\(232\) 0 0
\(233\) 20.7529 1.35957 0.679784 0.733413i \(-0.262074\pi\)
0.679784 + 0.733413i \(0.262074\pi\)
\(234\) 0 0
\(235\) −3.88176 −0.253218
\(236\) 0 0
\(237\) −9.91246 −0.643884
\(238\) 0 0
\(239\) −17.9556 −1.16145 −0.580725 0.814100i \(-0.697231\pi\)
−0.580725 + 0.814100i \(0.697231\pi\)
\(240\) 0 0
\(241\) −1.63405 −0.105258 −0.0526291 0.998614i \(-0.516760\pi\)
−0.0526291 + 0.998614i \(0.516760\pi\)
\(242\) 0 0
\(243\) −4.29929 −0.275800
\(244\) 0 0
\(245\) 10.2310 0.653633
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 24.7694 1.56970
\(250\) 0 0
\(251\) 4.60415 0.290611 0.145306 0.989387i \(-0.453583\pi\)
0.145306 + 0.989387i \(0.453583\pi\)
\(252\) 0 0
\(253\) −0.835094 −0.0525019
\(254\) 0 0
\(255\) −0.940561 −0.0589002
\(256\) 0 0
\(257\) −12.2767 −0.765798 −0.382899 0.923790i \(-0.625074\pi\)
−0.382899 + 0.923790i \(0.625074\pi\)
\(258\) 0 0
\(259\) −14.8541 −0.922988
\(260\) 0 0
\(261\) 3.29094 0.203704
\(262\) 0 0
\(263\) −18.8187 −1.16041 −0.580204 0.814471i \(-0.697027\pi\)
−0.580204 + 0.814471i \(0.697027\pi\)
\(264\) 0 0
\(265\) −10.7467 −0.660162
\(266\) 0 0
\(267\) 5.66917 0.346947
\(268\) 0 0
\(269\) −6.81434 −0.415477 −0.207739 0.978184i \(-0.566610\pi\)
−0.207739 + 0.978184i \(0.566610\pi\)
\(270\) 0 0
\(271\) 4.65756 0.282927 0.141463 0.989943i \(-0.454819\pi\)
0.141463 + 0.989943i \(0.454819\pi\)
\(272\) 0 0
\(273\) −10.0769 −0.609881
\(274\) 0 0
\(275\) −0.151808 −0.00915438
\(276\) 0 0
\(277\) 14.9240 0.896697 0.448348 0.893859i \(-0.352012\pi\)
0.448348 + 0.893859i \(0.352012\pi\)
\(278\) 0 0
\(279\) 1.49816 0.0896926
\(280\) 0 0
\(281\) −8.36780 −0.499181 −0.249590 0.968351i \(-0.580296\pi\)
−0.249590 + 0.968351i \(0.580296\pi\)
\(282\) 0 0
\(283\) −11.4493 −0.680592 −0.340296 0.940318i \(-0.610527\pi\)
−0.340296 + 0.940318i \(0.610527\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.58615 −0.270712
\(288\) 0 0
\(289\) −16.9077 −0.994569
\(290\) 0 0
\(291\) −25.5735 −1.49915
\(292\) 0 0
\(293\) −9.17234 −0.535854 −0.267927 0.963439i \(-0.586339\pi\)
−0.267927 + 0.963439i \(0.586339\pi\)
\(294\) 0 0
\(295\) 23.8091 1.38622
\(296\) 0 0
\(297\) 0.646024 0.0374861
\(298\) 0 0
\(299\) 34.2574 1.98116
\(300\) 0 0
\(301\) 14.2157 0.819381
\(302\) 0 0
\(303\) −25.6504 −1.47358
\(304\) 0 0
\(305\) −3.83668 −0.219688
\(306\) 0 0
\(307\) −17.8631 −1.01950 −0.509749 0.860323i \(-0.670262\pi\)
−0.509749 + 0.860323i \(0.670262\pi\)
\(308\) 0 0
\(309\) −17.0782 −0.971547
\(310\) 0 0
\(311\) 13.7027 0.777008 0.388504 0.921447i \(-0.372992\pi\)
0.388504 + 0.921447i \(0.372992\pi\)
\(312\) 0 0
\(313\) 31.5127 1.78120 0.890600 0.454787i \(-0.150284\pi\)
0.890600 + 0.454787i \(0.150284\pi\)
\(314\) 0 0
\(315\) −1.04315 −0.0587748
\(316\) 0 0
\(317\) −12.0292 −0.675629 −0.337815 0.941213i \(-0.609688\pi\)
−0.337815 + 0.941213i \(0.609688\pi\)
\(318\) 0 0
\(319\) −0.928682 −0.0519962
\(320\) 0 0
\(321\) 0.986668 0.0550704
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 6.22751 0.345440
\(326\) 0 0
\(327\) −2.22629 −0.123114
\(328\) 0 0
\(329\) −2.61852 −0.144364
\(330\) 0 0
\(331\) 6.86623 0.377402 0.188701 0.982035i \(-0.439572\pi\)
0.188701 + 0.982035i \(0.439572\pi\)
\(332\) 0 0
\(333\) −4.76606 −0.261179
\(334\) 0 0
\(335\) 14.4121 0.787415
\(336\) 0 0
\(337\) −33.4400 −1.82160 −0.910798 0.412853i \(-0.864532\pi\)
−0.910798 + 0.412853i \(0.864532\pi\)
\(338\) 0 0
\(339\) −24.3600 −1.32305
\(340\) 0 0
\(341\) −0.422771 −0.0228944
\(342\) 0 0
\(343\) 15.9961 0.863710
\(344\) 0 0
\(345\) −21.9746 −1.18307
\(346\) 0 0
\(347\) −12.3927 −0.665274 −0.332637 0.943055i \(-0.607938\pi\)
−0.332637 + 0.943055i \(0.607938\pi\)
\(348\) 0 0
\(349\) 5.02432 0.268945 0.134473 0.990917i \(-0.457066\pi\)
0.134473 + 0.990917i \(0.457066\pi\)
\(350\) 0 0
\(351\) −26.5014 −1.41454
\(352\) 0 0
\(353\) 7.87575 0.419184 0.209592 0.977789i \(-0.432786\pi\)
0.209592 + 0.977789i \(0.432786\pi\)
\(354\) 0 0
\(355\) −8.58367 −0.455574
\(356\) 0 0
\(357\) −0.634474 −0.0335799
\(358\) 0 0
\(359\) −25.3338 −1.33707 −0.668535 0.743681i \(-0.733078\pi\)
−0.668535 + 0.743681i \(0.733078\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 17.6571 0.926757
\(364\) 0 0
\(365\) −1.29911 −0.0679988
\(366\) 0 0
\(367\) 2.32379 0.121301 0.0606504 0.998159i \(-0.480683\pi\)
0.0606504 + 0.998159i \(0.480683\pi\)
\(368\) 0 0
\(369\) −1.47151 −0.0766035
\(370\) 0 0
\(371\) −7.24938 −0.376369
\(372\) 0 0
\(373\) −0.262182 −0.0135753 −0.00678763 0.999977i \(-0.502161\pi\)
−0.00678763 + 0.999977i \(0.502161\pi\)
\(374\) 0 0
\(375\) −19.4722 −1.00554
\(376\) 0 0
\(377\) 38.0966 1.96208
\(378\) 0 0
\(379\) 8.75558 0.449744 0.224872 0.974388i \(-0.427804\pi\)
0.224872 + 0.974388i \(0.427804\pi\)
\(380\) 0 0
\(381\) −35.3845 −1.81280
\(382\) 0 0
\(383\) −1.18420 −0.0605096 −0.0302548 0.999542i \(-0.509632\pi\)
−0.0302548 + 0.999542i \(0.509632\pi\)
\(384\) 0 0
\(385\) 0.294370 0.0150025
\(386\) 0 0
\(387\) 4.56124 0.231861
\(388\) 0 0
\(389\) −10.4576 −0.530223 −0.265111 0.964218i \(-0.585409\pi\)
−0.265111 + 0.964218i \(0.585409\pi\)
\(390\) 0 0
\(391\) 2.15696 0.109082
\(392\) 0 0
\(393\) 8.56456 0.432025
\(394\) 0 0
\(395\) −11.8787 −0.597681
\(396\) 0 0
\(397\) 23.4565 1.17725 0.588624 0.808407i \(-0.299670\pi\)
0.588624 + 0.808407i \(0.299670\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.9890 −0.898325 −0.449163 0.893450i \(-0.648278\pi\)
−0.449163 + 0.893450i \(0.648278\pi\)
\(402\) 0 0
\(403\) 17.3430 0.863917
\(404\) 0 0
\(405\) 14.5907 0.725019
\(406\) 0 0
\(407\) 1.34495 0.0666668
\(408\) 0 0
\(409\) 27.7238 1.37085 0.685427 0.728141i \(-0.259616\pi\)
0.685427 + 0.728141i \(0.259616\pi\)
\(410\) 0 0
\(411\) −11.5917 −0.571777
\(412\) 0 0
\(413\) 16.0609 0.790306
\(414\) 0 0
\(415\) 29.6826 1.45706
\(416\) 0 0
\(417\) 6.34266 0.310602
\(418\) 0 0
\(419\) −33.8453 −1.65345 −0.826724 0.562607i \(-0.809798\pi\)
−0.826724 + 0.562607i \(0.809798\pi\)
\(420\) 0 0
\(421\) 22.2246 1.08316 0.541581 0.840648i \(-0.317826\pi\)
0.541581 + 0.840648i \(0.317826\pi\)
\(422\) 0 0
\(423\) −0.840175 −0.0408507
\(424\) 0 0
\(425\) 0.392105 0.0190199
\(426\) 0 0
\(427\) −2.58811 −0.125247
\(428\) 0 0
\(429\) 0.912404 0.0440513
\(430\) 0 0
\(431\) −24.0938 −1.16056 −0.580279 0.814418i \(-0.697056\pi\)
−0.580279 + 0.814418i \(0.697056\pi\)
\(432\) 0 0
\(433\) 11.9974 0.576557 0.288278 0.957547i \(-0.406917\pi\)
0.288278 + 0.957547i \(0.406917\pi\)
\(434\) 0 0
\(435\) −24.4373 −1.17168
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −32.7160 −1.56145 −0.780724 0.624876i \(-0.785149\pi\)
−0.780724 + 0.624876i \(0.785149\pi\)
\(440\) 0 0
\(441\) 2.21441 0.105448
\(442\) 0 0
\(443\) −34.9555 −1.66079 −0.830394 0.557177i \(-0.811885\pi\)
−0.830394 + 0.557177i \(0.811885\pi\)
\(444\) 0 0
\(445\) 6.79369 0.322052
\(446\) 0 0
\(447\) 23.5720 1.11492
\(448\) 0 0
\(449\) −23.0987 −1.09010 −0.545048 0.838405i \(-0.683488\pi\)
−0.545048 + 0.838405i \(0.683488\pi\)
\(450\) 0 0
\(451\) 0.415249 0.0195533
\(452\) 0 0
\(453\) 4.65935 0.218915
\(454\) 0 0
\(455\) −12.0757 −0.566118
\(456\) 0 0
\(457\) −28.3664 −1.32692 −0.663462 0.748210i \(-0.730914\pi\)
−0.663462 + 0.748210i \(0.730914\pi\)
\(458\) 0 0
\(459\) −1.66861 −0.0778842
\(460\) 0 0
\(461\) 17.4040 0.810585 0.405292 0.914187i \(-0.367170\pi\)
0.405292 + 0.914187i \(0.367170\pi\)
\(462\) 0 0
\(463\) 29.8025 1.38504 0.692520 0.721398i \(-0.256500\pi\)
0.692520 + 0.721398i \(0.256500\pi\)
\(464\) 0 0
\(465\) −11.1248 −0.515899
\(466\) 0 0
\(467\) −22.1790 −1.02632 −0.513161 0.858292i \(-0.671526\pi\)
−0.513161 + 0.858292i \(0.671526\pi\)
\(468\) 0 0
\(469\) 9.72195 0.448918
\(470\) 0 0
\(471\) −3.90295 −0.179838
\(472\) 0 0
\(473\) −1.28715 −0.0591833
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2.32603 −0.106501
\(478\) 0 0
\(479\) −18.4306 −0.842117 −0.421059 0.907033i \(-0.638341\pi\)
−0.421059 + 0.907033i \(0.638341\pi\)
\(480\) 0 0
\(481\) −55.1729 −2.51567
\(482\) 0 0
\(483\) −14.8234 −0.674488
\(484\) 0 0
\(485\) −30.6462 −1.39157
\(486\) 0 0
\(487\) 4.82574 0.218675 0.109338 0.994005i \(-0.465127\pi\)
0.109338 + 0.994005i \(0.465127\pi\)
\(488\) 0 0
\(489\) 33.8326 1.52996
\(490\) 0 0
\(491\) −2.11235 −0.0953289 −0.0476645 0.998863i \(-0.515178\pi\)
−0.0476645 + 0.998863i \(0.515178\pi\)
\(492\) 0 0
\(493\) 2.39869 0.108032
\(494\) 0 0
\(495\) 0.0944512 0.00424526
\(496\) 0 0
\(497\) −5.79029 −0.259730
\(498\) 0 0
\(499\) 32.5780 1.45839 0.729196 0.684304i \(-0.239894\pi\)
0.729196 + 0.684304i \(0.239894\pi\)
\(500\) 0 0
\(501\) 7.88023 0.352063
\(502\) 0 0
\(503\) 2.99066 0.133347 0.0666735 0.997775i \(-0.478761\pi\)
0.0666735 + 0.997775i \(0.478761\pi\)
\(504\) 0 0
\(505\) −30.7384 −1.36784
\(506\) 0 0
\(507\) −16.5351 −0.734349
\(508\) 0 0
\(509\) −20.0650 −0.889366 −0.444683 0.895688i \(-0.646684\pi\)
−0.444683 + 0.895688i \(0.646684\pi\)
\(510\) 0 0
\(511\) −0.876344 −0.0387672
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −20.4658 −0.901832
\(516\) 0 0
\(517\) 0.237092 0.0104273
\(518\) 0 0
\(519\) 4.40989 0.193573
\(520\) 0 0
\(521\) −17.1816 −0.752741 −0.376370 0.926469i \(-0.622828\pi\)
−0.376370 + 0.926469i \(0.622828\pi\)
\(522\) 0 0
\(523\) 34.4988 1.50853 0.754264 0.656571i \(-0.227994\pi\)
0.754264 + 0.656571i \(0.227994\pi\)
\(524\) 0 0
\(525\) −2.69468 −0.117606
\(526\) 0 0
\(527\) 1.09197 0.0475671
\(528\) 0 0
\(529\) 27.3936 1.19103
\(530\) 0 0
\(531\) 5.15328 0.223633
\(532\) 0 0
\(533\) −17.0345 −0.737844
\(534\) 0 0
\(535\) 1.18238 0.0511188
\(536\) 0 0
\(537\) 16.9327 0.730702
\(538\) 0 0
\(539\) −0.624892 −0.0269160
\(540\) 0 0
\(541\) −18.5603 −0.797972 −0.398986 0.916957i \(-0.630638\pi\)
−0.398986 + 0.916957i \(0.630638\pi\)
\(542\) 0 0
\(543\) 27.8727 1.19613
\(544\) 0 0
\(545\) −2.66790 −0.114280
\(546\) 0 0
\(547\) 30.9014 1.32125 0.660625 0.750716i \(-0.270291\pi\)
0.660625 + 0.750716i \(0.270291\pi\)
\(548\) 0 0
\(549\) −0.830417 −0.0354413
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −8.01300 −0.340747
\(554\) 0 0
\(555\) 35.3909 1.50226
\(556\) 0 0
\(557\) 3.58042 0.151707 0.0758537 0.997119i \(-0.475832\pi\)
0.0758537 + 0.997119i \(0.475832\pi\)
\(558\) 0 0
\(559\) 52.8019 2.23328
\(560\) 0 0
\(561\) 0.0574480 0.00242546
\(562\) 0 0
\(563\) −5.03014 −0.211995 −0.105998 0.994366i \(-0.533804\pi\)
−0.105998 + 0.994366i \(0.533804\pi\)
\(564\) 0 0
\(565\) −29.1920 −1.22811
\(566\) 0 0
\(567\) 9.84247 0.413345
\(568\) 0 0
\(569\) −12.4008 −0.519870 −0.259935 0.965626i \(-0.583701\pi\)
−0.259935 + 0.965626i \(0.583701\pi\)
\(570\) 0 0
\(571\) −11.3604 −0.475417 −0.237709 0.971336i \(-0.576396\pi\)
−0.237709 + 0.971336i \(0.576396\pi\)
\(572\) 0 0
\(573\) −36.2008 −1.51231
\(574\) 0 0
\(575\) 9.16085 0.382034
\(576\) 0 0
\(577\) −13.4189 −0.558637 −0.279318 0.960199i \(-0.590108\pi\)
−0.279318 + 0.960199i \(0.590108\pi\)
\(578\) 0 0
\(579\) −33.1727 −1.37861
\(580\) 0 0
\(581\) 20.0230 0.830694
\(582\) 0 0
\(583\) 0.656390 0.0271849
\(584\) 0 0
\(585\) −3.87460 −0.160195
\(586\) 0 0
\(587\) 37.9147 1.56491 0.782454 0.622708i \(-0.213968\pi\)
0.782454 + 0.622708i \(0.213968\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −20.5442 −0.845074
\(592\) 0 0
\(593\) 24.3302 0.999120 0.499560 0.866279i \(-0.333495\pi\)
0.499560 + 0.866279i \(0.333495\pi\)
\(594\) 0 0
\(595\) −0.760327 −0.0311704
\(596\) 0 0
\(597\) −34.0050 −1.39173
\(598\) 0 0
\(599\) 33.3419 1.36231 0.681157 0.732137i \(-0.261477\pi\)
0.681157 + 0.732137i \(0.261477\pi\)
\(600\) 0 0
\(601\) 11.8427 0.483074 0.241537 0.970392i \(-0.422348\pi\)
0.241537 + 0.970392i \(0.422348\pi\)
\(602\) 0 0
\(603\) 3.11937 0.127031
\(604\) 0 0
\(605\) 21.1595 0.860256
\(606\) 0 0
\(607\) −22.0414 −0.894632 −0.447316 0.894376i \(-0.647620\pi\)
−0.447316 + 0.894376i \(0.647620\pi\)
\(608\) 0 0
\(609\) −16.4846 −0.667992
\(610\) 0 0
\(611\) −9.72603 −0.393473
\(612\) 0 0
\(613\) 12.8268 0.518069 0.259035 0.965868i \(-0.416596\pi\)
0.259035 + 0.965868i \(0.416596\pi\)
\(614\) 0 0
\(615\) 10.9268 0.440612
\(616\) 0 0
\(617\) −28.2846 −1.13869 −0.569347 0.822097i \(-0.692804\pi\)
−0.569347 + 0.822097i \(0.692804\pi\)
\(618\) 0 0
\(619\) −31.9371 −1.28366 −0.641830 0.766847i \(-0.721824\pi\)
−0.641830 + 0.766847i \(0.721824\pi\)
\(620\) 0 0
\(621\) −38.9843 −1.56438
\(622\) 0 0
\(623\) 4.58282 0.183607
\(624\) 0 0
\(625\) −16.8823 −0.675294
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.47387 −0.138512
\(630\) 0 0
\(631\) −15.6214 −0.621880 −0.310940 0.950430i \(-0.600644\pi\)
−0.310940 + 0.950430i \(0.600644\pi\)
\(632\) 0 0
\(633\) −7.95185 −0.316058
\(634\) 0 0
\(635\) −42.4032 −1.68272
\(636\) 0 0
\(637\) 25.6345 1.01567
\(638\) 0 0
\(639\) −1.85786 −0.0734959
\(640\) 0 0
\(641\) −9.43327 −0.372592 −0.186296 0.982494i \(-0.559648\pi\)
−0.186296 + 0.982494i \(0.559648\pi\)
\(642\) 0 0
\(643\) 25.5859 1.00901 0.504505 0.863409i \(-0.331675\pi\)
0.504505 + 0.863409i \(0.331675\pi\)
\(644\) 0 0
\(645\) −33.8700 −1.33363
\(646\) 0 0
\(647\) −46.0742 −1.81137 −0.905683 0.423956i \(-0.860641\pi\)
−0.905683 + 0.423956i \(0.860641\pi\)
\(648\) 0 0
\(649\) −1.45422 −0.0570832
\(650\) 0 0
\(651\) −7.50443 −0.294122
\(652\) 0 0
\(653\) 6.44609 0.252255 0.126127 0.992014i \(-0.459745\pi\)
0.126127 + 0.992014i \(0.459745\pi\)
\(654\) 0 0
\(655\) 10.2634 0.401024
\(656\) 0 0
\(657\) −0.281183 −0.0109700
\(658\) 0 0
\(659\) 16.3950 0.638657 0.319329 0.947644i \(-0.396543\pi\)
0.319329 + 0.947644i \(0.396543\pi\)
\(660\) 0 0
\(661\) −7.29578 −0.283773 −0.141887 0.989883i \(-0.545317\pi\)
−0.141887 + 0.989883i \(0.545317\pi\)
\(662\) 0 0
\(663\) −2.35664 −0.0915245
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 56.0412 2.16992
\(668\) 0 0
\(669\) −0.546244 −0.0211190
\(670\) 0 0
\(671\) 0.234338 0.00904653
\(672\) 0 0
\(673\) −8.67863 −0.334537 −0.167268 0.985911i \(-0.553495\pi\)
−0.167268 + 0.985911i \(0.553495\pi\)
\(674\) 0 0
\(675\) −7.08679 −0.272771
\(676\) 0 0
\(677\) −27.7157 −1.06520 −0.532601 0.846367i \(-0.678785\pi\)
−0.532601 + 0.846367i \(0.678785\pi\)
\(678\) 0 0
\(679\) −20.6730 −0.793359
\(680\) 0 0
\(681\) −37.7477 −1.44649
\(682\) 0 0
\(683\) −21.8733 −0.836959 −0.418480 0.908226i \(-0.637437\pi\)
−0.418480 + 0.908226i \(0.637437\pi\)
\(684\) 0 0
\(685\) −13.8910 −0.530748
\(686\) 0 0
\(687\) −16.4660 −0.628217
\(688\) 0 0
\(689\) −26.9266 −1.02582
\(690\) 0 0
\(691\) −16.6827 −0.634641 −0.317320 0.948318i \(-0.602783\pi\)
−0.317320 + 0.948318i \(0.602783\pi\)
\(692\) 0 0
\(693\) 0.0637139 0.00242029
\(694\) 0 0
\(695\) 7.60078 0.288314
\(696\) 0 0
\(697\) −1.07255 −0.0406256
\(698\) 0 0
\(699\) −33.3543 −1.26158
\(700\) 0 0
\(701\) −27.3863 −1.03437 −0.517184 0.855874i \(-0.673020\pi\)
−0.517184 + 0.855874i \(0.673020\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 6.23881 0.234967
\(706\) 0 0
\(707\) −20.7352 −0.779828
\(708\) 0 0
\(709\) −31.5807 −1.18604 −0.593019 0.805188i \(-0.702064\pi\)
−0.593019 + 0.805188i \(0.702064\pi\)
\(710\) 0 0
\(711\) −2.57104 −0.0964215
\(712\) 0 0
\(713\) 25.5121 0.955435
\(714\) 0 0
\(715\) 1.09339 0.0408903
\(716\) 0 0
\(717\) 28.8584 1.07774
\(718\) 0 0
\(719\) −7.97601 −0.297455 −0.148728 0.988878i \(-0.547518\pi\)
−0.148728 + 0.988878i \(0.547518\pi\)
\(720\) 0 0
\(721\) −13.8056 −0.514149
\(722\) 0 0
\(723\) 2.62626 0.0976716
\(724\) 0 0
\(725\) 10.1875 0.378354
\(726\) 0 0
\(727\) 47.3967 1.75785 0.878924 0.476962i \(-0.158262\pi\)
0.878924 + 0.476962i \(0.158262\pi\)
\(728\) 0 0
\(729\) 29.6367 1.09766
\(730\) 0 0
\(731\) 3.32458 0.122964
\(732\) 0 0
\(733\) −23.7095 −0.875730 −0.437865 0.899041i \(-0.644265\pi\)
−0.437865 + 0.899041i \(0.644265\pi\)
\(734\) 0 0
\(735\) −16.4434 −0.606522
\(736\) 0 0
\(737\) −0.880266 −0.0324250
\(738\) 0 0
\(739\) −25.7918 −0.948766 −0.474383 0.880319i \(-0.657329\pi\)
−0.474383 + 0.880319i \(0.657329\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14.5905 −0.535273 −0.267636 0.963520i \(-0.586243\pi\)
−0.267636 + 0.963520i \(0.586243\pi\)
\(744\) 0 0
\(745\) 28.2476 1.03491
\(746\) 0 0
\(747\) 6.42455 0.235062
\(748\) 0 0
\(749\) 0.797599 0.0291436
\(750\) 0 0
\(751\) 3.93065 0.143431 0.0717157 0.997425i \(-0.477153\pi\)
0.0717157 + 0.997425i \(0.477153\pi\)
\(752\) 0 0
\(753\) −7.39984 −0.269665
\(754\) 0 0
\(755\) 5.58357 0.203207
\(756\) 0 0
\(757\) −21.1982 −0.770461 −0.385230 0.922820i \(-0.625878\pi\)
−0.385230 + 0.922820i \(0.625878\pi\)
\(758\) 0 0
\(759\) 1.34217 0.0487178
\(760\) 0 0
\(761\) 52.0077 1.88528 0.942638 0.333815i \(-0.108336\pi\)
0.942638 + 0.333815i \(0.108336\pi\)
\(762\) 0 0
\(763\) −1.79968 −0.0651529
\(764\) 0 0
\(765\) −0.243957 −0.00882030
\(766\) 0 0
\(767\) 59.6554 2.15403
\(768\) 0 0
\(769\) 36.4511 1.31446 0.657231 0.753689i \(-0.271728\pi\)
0.657231 + 0.753689i \(0.271728\pi\)
\(770\) 0 0
\(771\) 19.7312 0.710603
\(772\) 0 0
\(773\) 30.7027 1.10430 0.552150 0.833745i \(-0.313807\pi\)
0.552150 + 0.833745i \(0.313807\pi\)
\(774\) 0 0
\(775\) 4.63774 0.166592
\(776\) 0 0
\(777\) 23.8737 0.856463
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0.524277 0.0187601
\(782\) 0 0
\(783\) −43.3532 −1.54932
\(784\) 0 0
\(785\) −4.67713 −0.166934
\(786\) 0 0
\(787\) −47.7270 −1.70129 −0.850643 0.525744i \(-0.823787\pi\)
−0.850643 + 0.525744i \(0.823787\pi\)
\(788\) 0 0
\(789\) 30.2456 1.07677
\(790\) 0 0
\(791\) −19.6920 −0.700168
\(792\) 0 0
\(793\) −9.61308 −0.341370
\(794\) 0 0
\(795\) 17.2722 0.612581
\(796\) 0 0
\(797\) 15.5088 0.549349 0.274674 0.961537i \(-0.411430\pi\)
0.274674 + 0.961537i \(0.411430\pi\)
\(798\) 0 0
\(799\) −0.612383 −0.0216646
\(800\) 0 0
\(801\) 1.47044 0.0519553
\(802\) 0 0
\(803\) 0.0793479 0.00280013
\(804\) 0 0
\(805\) −17.7637 −0.626089
\(806\) 0 0
\(807\) 10.9521 0.385532
\(808\) 0 0
\(809\) 11.5061 0.404532 0.202266 0.979331i \(-0.435169\pi\)
0.202266 + 0.979331i \(0.435169\pi\)
\(810\) 0 0
\(811\) 42.5804 1.49520 0.747601 0.664148i \(-0.231206\pi\)
0.747601 + 0.664148i \(0.231206\pi\)
\(812\) 0 0
\(813\) −7.48569 −0.262535
\(814\) 0 0
\(815\) 40.5435 1.42018
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −2.61369 −0.0913296
\(820\) 0 0
\(821\) 9.84520 0.343600 0.171800 0.985132i \(-0.445042\pi\)
0.171800 + 0.985132i \(0.445042\pi\)
\(822\) 0 0
\(823\) −5.03664 −0.175566 −0.0877830 0.996140i \(-0.527978\pi\)
−0.0877830 + 0.996140i \(0.527978\pi\)
\(824\) 0 0
\(825\) 0.243988 0.00849457
\(826\) 0 0
\(827\) −50.1473 −1.74379 −0.871897 0.489690i \(-0.837110\pi\)
−0.871897 + 0.489690i \(0.837110\pi\)
\(828\) 0 0
\(829\) −10.2374 −0.355560 −0.177780 0.984070i \(-0.556892\pi\)
−0.177780 + 0.984070i \(0.556892\pi\)
\(830\) 0 0
\(831\) −23.9860 −0.832067
\(832\) 0 0
\(833\) 1.61403 0.0559229
\(834\) 0 0
\(835\) 9.44333 0.326800
\(836\) 0 0
\(837\) −19.7360 −0.682177
\(838\) 0 0
\(839\) −0.745157 −0.0257257 −0.0128628 0.999917i \(-0.504094\pi\)
−0.0128628 + 0.999917i \(0.504094\pi\)
\(840\) 0 0
\(841\) 33.3217 1.14903
\(842\) 0 0
\(843\) 13.4488 0.463202
\(844\) 0 0
\(845\) −19.8149 −0.681654
\(846\) 0 0
\(847\) 14.2736 0.490446
\(848\) 0 0
\(849\) 18.4015 0.631538
\(850\) 0 0
\(851\) −81.1610 −2.78216
\(852\) 0 0
\(853\) −37.3866 −1.28009 −0.640046 0.768337i \(-0.721085\pi\)
−0.640046 + 0.768337i \(0.721085\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 39.7277 1.35707 0.678535 0.734568i \(-0.262615\pi\)
0.678535 + 0.734568i \(0.262615\pi\)
\(858\) 0 0
\(859\) 50.7147 1.73036 0.865182 0.501459i \(-0.167203\pi\)
0.865182 + 0.501459i \(0.167203\pi\)
\(860\) 0 0
\(861\) 7.37091 0.251200
\(862\) 0 0
\(863\) 41.3585 1.40786 0.703930 0.710269i \(-0.251427\pi\)
0.703930 + 0.710269i \(0.251427\pi\)
\(864\) 0 0
\(865\) 5.28462 0.179683
\(866\) 0 0
\(867\) 27.1742 0.922885
\(868\) 0 0
\(869\) 0.725531 0.0246119
\(870\) 0 0
\(871\) 36.1105 1.22356
\(872\) 0 0
\(873\) −6.63312 −0.224497
\(874\) 0 0
\(875\) −15.7409 −0.532139
\(876\) 0 0
\(877\) −9.72990 −0.328555 −0.164278 0.986414i \(-0.552529\pi\)
−0.164278 + 0.986414i \(0.552529\pi\)
\(878\) 0 0
\(879\) 14.7419 0.497232
\(880\) 0 0
\(881\) 53.7552 1.81106 0.905529 0.424284i \(-0.139474\pi\)
0.905529 + 0.424284i \(0.139474\pi\)
\(882\) 0 0
\(883\) 41.7564 1.40521 0.702607 0.711578i \(-0.252019\pi\)
0.702607 + 0.711578i \(0.252019\pi\)
\(884\) 0 0
\(885\) −38.2663 −1.28631
\(886\) 0 0
\(887\) −37.1518 −1.24744 −0.623718 0.781649i \(-0.714379\pi\)
−0.623718 + 0.781649i \(0.714379\pi\)
\(888\) 0 0
\(889\) −28.6040 −0.959346
\(890\) 0 0
\(891\) −0.891179 −0.0298556
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 20.2915 0.678269
\(896\) 0 0
\(897\) −55.0589 −1.83836
\(898\) 0 0
\(899\) 28.3712 0.946233
\(900\) 0 0
\(901\) −1.69539 −0.0564815
\(902\) 0 0
\(903\) −22.8477 −0.760324
\(904\) 0 0
\(905\) 33.4014 1.11030
\(906\) 0 0
\(907\) −10.8467 −0.360158 −0.180079 0.983652i \(-0.557635\pi\)
−0.180079 + 0.983652i \(0.557635\pi\)
\(908\) 0 0
\(909\) −6.65307 −0.220668
\(910\) 0 0
\(911\) −50.3661 −1.66870 −0.834351 0.551233i \(-0.814158\pi\)
−0.834351 + 0.551233i \(0.814158\pi\)
\(912\) 0 0
\(913\) −1.81297 −0.0600004
\(914\) 0 0
\(915\) 6.16635 0.203853
\(916\) 0 0
\(917\) 6.92339 0.228630
\(918\) 0 0
\(919\) −38.5967 −1.27319 −0.636593 0.771200i \(-0.719657\pi\)
−0.636593 + 0.771200i \(0.719657\pi\)
\(920\) 0 0
\(921\) 28.7097 0.946018
\(922\) 0 0
\(923\) −21.5070 −0.707912
\(924\) 0 0
\(925\) −14.7539 −0.485106
\(926\) 0 0
\(927\) −4.42966 −0.145489
\(928\) 0 0
\(929\) −9.70019 −0.318253 −0.159126 0.987258i \(-0.550868\pi\)
−0.159126 + 0.987258i \(0.550868\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −22.0231 −0.721004
\(934\) 0 0
\(935\) 0.0688432 0.00225141
\(936\) 0 0
\(937\) 38.2198 1.24859 0.624294 0.781190i \(-0.285387\pi\)
0.624294 + 0.781190i \(0.285387\pi\)
\(938\) 0 0
\(939\) −50.6475 −1.65282
\(940\) 0 0
\(941\) 30.8153 1.00455 0.502275 0.864708i \(-0.332497\pi\)
0.502275 + 0.864708i \(0.332497\pi\)
\(942\) 0 0
\(943\) −25.0582 −0.816006
\(944\) 0 0
\(945\) 13.7419 0.447025
\(946\) 0 0
\(947\) −13.2873 −0.431780 −0.215890 0.976418i \(-0.569265\pi\)
−0.215890 + 0.976418i \(0.569265\pi\)
\(948\) 0 0
\(949\) −3.25503 −0.105663
\(950\) 0 0
\(951\) 19.3335 0.626933
\(952\) 0 0
\(953\) −13.3100 −0.431153 −0.215577 0.976487i \(-0.569163\pi\)
−0.215577 + 0.976487i \(0.569163\pi\)
\(954\) 0 0
\(955\) −43.3814 −1.40379
\(956\) 0 0
\(957\) 1.49259 0.0482486
\(958\) 0 0
\(959\) −9.37046 −0.302588
\(960\) 0 0
\(961\) −18.0843 −0.583366
\(962\) 0 0
\(963\) 0.255916 0.00824679
\(964\) 0 0
\(965\) −39.7528 −1.27969
\(966\) 0 0
\(967\) 23.3525 0.750966 0.375483 0.926829i \(-0.377477\pi\)
0.375483 + 0.926829i \(0.377477\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 44.8281 1.43860 0.719301 0.694699i \(-0.244462\pi\)
0.719301 + 0.694699i \(0.244462\pi\)
\(972\) 0 0
\(973\) 5.12726 0.164372
\(974\) 0 0
\(975\) −10.0089 −0.320542
\(976\) 0 0
\(977\) 18.2001 0.582273 0.291136 0.956682i \(-0.405967\pi\)
0.291136 + 0.956682i \(0.405967\pi\)
\(978\) 0 0
\(979\) −0.414948 −0.0132618
\(980\) 0 0
\(981\) −0.577444 −0.0184364
\(982\) 0 0
\(983\) 20.7521 0.661888 0.330944 0.943650i \(-0.392633\pi\)
0.330944 + 0.943650i \(0.392633\pi\)
\(984\) 0 0
\(985\) −24.6192 −0.784434
\(986\) 0 0
\(987\) 4.20852 0.133959
\(988\) 0 0
\(989\) 77.6730 2.46986
\(990\) 0 0
\(991\) 40.1354 1.27494 0.637472 0.770474i \(-0.279980\pi\)
0.637472 + 0.770474i \(0.279980\pi\)
\(992\) 0 0
\(993\) −11.0355 −0.350201
\(994\) 0 0
\(995\) −40.7501 −1.29187
\(996\) 0 0
\(997\) 56.3953 1.78606 0.893029 0.449999i \(-0.148576\pi\)
0.893029 + 0.449999i \(0.148576\pi\)
\(998\) 0 0
\(999\) 62.7857 1.98645
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.u.1.2 yes 6
4.3 odd 2 5776.2.a.bx.1.5 6
19.18 odd 2 2888.2.a.t.1.5 6
76.75 even 2 5776.2.a.bz.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2888.2.a.t.1.5 6 19.18 odd 2
2888.2.a.u.1.2 yes 6 1.1 even 1 trivial
5776.2.a.bx.1.5 6 4.3 odd 2
5776.2.a.bz.1.2 6 76.75 even 2