Properties

Label 2888.2.a.u.1.1
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,3,0,2,0,-2,0,9,0,-5,0,10,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.3022625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 7x^{3} + 17x^{2} + 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.50071\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.29838 q^{3} +2.83118 q^{5} -4.51153 q^{7} +2.28257 q^{9} -5.79410 q^{11} +0.740130 q^{13} -6.50714 q^{15} -5.42213 q^{17} +10.3692 q^{21} -3.94732 q^{23} +3.01559 q^{25} +1.64894 q^{27} -5.50802 q^{29} +5.13934 q^{31} +13.3171 q^{33} -12.7730 q^{35} +6.55825 q^{37} -1.70110 q^{39} -6.98726 q^{41} +5.53624 q^{43} +6.46236 q^{45} +0.994182 q^{47} +13.3539 q^{49} +12.4621 q^{51} +1.00231 q^{53} -16.4041 q^{55} +0.364344 q^{59} +1.82500 q^{61} -10.2979 q^{63} +2.09544 q^{65} +12.8940 q^{67} +9.07246 q^{69} -3.46632 q^{71} +1.41070 q^{73} -6.93099 q^{75} +26.1403 q^{77} +6.19548 q^{79} -10.6376 q^{81} -2.62892 q^{83} -15.3510 q^{85} +12.6596 q^{87} -2.10047 q^{89} -3.33912 q^{91} -11.8122 q^{93} -0.874719 q^{97} -13.2254 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} + 2 q^{5} - 2 q^{7} + 9 q^{9} - 5 q^{11} + 10 q^{13} + 4 q^{17} + 23 q^{21} - 15 q^{23} + 12 q^{25} + 18 q^{27} - 7 q^{29} + 5 q^{31} - q^{33} - 38 q^{35} + 17 q^{37} + 37 q^{39} + 4 q^{41}+ \cdots - 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.29838 −1.32697 −0.663486 0.748189i \(-0.730924\pi\)
−0.663486 + 0.748189i \(0.730924\pi\)
\(4\) 0 0
\(5\) 2.83118 1.26614 0.633072 0.774093i \(-0.281794\pi\)
0.633072 + 0.774093i \(0.281794\pi\)
\(6\) 0 0
\(7\) −4.51153 −1.70520 −0.852599 0.522565i \(-0.824975\pi\)
−0.852599 + 0.522565i \(0.824975\pi\)
\(8\) 0 0
\(9\) 2.28257 0.760855
\(10\) 0 0
\(11\) −5.79410 −1.74699 −0.873493 0.486837i \(-0.838151\pi\)
−0.873493 + 0.486837i \(0.838151\pi\)
\(12\) 0 0
\(13\) 0.740130 0.205275 0.102638 0.994719i \(-0.467272\pi\)
0.102638 + 0.994719i \(0.467272\pi\)
\(14\) 0 0
\(15\) −6.50714 −1.68014
\(16\) 0 0
\(17\) −5.42213 −1.31506 −0.657530 0.753428i \(-0.728399\pi\)
−0.657530 + 0.753428i \(0.728399\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 10.3692 2.26275
\(22\) 0 0
\(23\) −3.94732 −0.823074 −0.411537 0.911393i \(-0.635008\pi\)
−0.411537 + 0.911393i \(0.635008\pi\)
\(24\) 0 0
\(25\) 3.01559 0.603119
\(26\) 0 0
\(27\) 1.64894 0.317338
\(28\) 0 0
\(29\) −5.50802 −1.02281 −0.511407 0.859338i \(-0.670876\pi\)
−0.511407 + 0.859338i \(0.670876\pi\)
\(30\) 0 0
\(31\) 5.13934 0.923053 0.461526 0.887126i \(-0.347302\pi\)
0.461526 + 0.887126i \(0.347302\pi\)
\(32\) 0 0
\(33\) 13.3171 2.31820
\(34\) 0 0
\(35\) −12.7730 −2.15903
\(36\) 0 0
\(37\) 6.55825 1.07817 0.539085 0.842251i \(-0.318770\pi\)
0.539085 + 0.842251i \(0.318770\pi\)
\(38\) 0 0
\(39\) −1.70110 −0.272394
\(40\) 0 0
\(41\) −6.98726 −1.09123 −0.545614 0.838037i \(-0.683703\pi\)
−0.545614 + 0.838037i \(0.683703\pi\)
\(42\) 0 0
\(43\) 5.53624 0.844269 0.422135 0.906533i \(-0.361281\pi\)
0.422135 + 0.906533i \(0.361281\pi\)
\(44\) 0 0
\(45\) 6.46236 0.963352
\(46\) 0 0
\(47\) 0.994182 0.145016 0.0725082 0.997368i \(-0.476900\pi\)
0.0725082 + 0.997368i \(0.476900\pi\)
\(48\) 0 0
\(49\) 13.3539 1.90770
\(50\) 0 0
\(51\) 12.4621 1.74505
\(52\) 0 0
\(53\) 1.00231 0.137678 0.0688390 0.997628i \(-0.478071\pi\)
0.0688390 + 0.997628i \(0.478071\pi\)
\(54\) 0 0
\(55\) −16.4041 −2.21193
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.364344 0.0474335 0.0237168 0.999719i \(-0.492450\pi\)
0.0237168 + 0.999719i \(0.492450\pi\)
\(60\) 0 0
\(61\) 1.82500 0.233668 0.116834 0.993151i \(-0.462726\pi\)
0.116834 + 0.993151i \(0.462726\pi\)
\(62\) 0 0
\(63\) −10.2979 −1.29741
\(64\) 0 0
\(65\) 2.09544 0.259908
\(66\) 0 0
\(67\) 12.8940 1.57526 0.787629 0.616150i \(-0.211308\pi\)
0.787629 + 0.616150i \(0.211308\pi\)
\(68\) 0 0
\(69\) 9.07246 1.09220
\(70\) 0 0
\(71\) −3.46632 −0.411376 −0.205688 0.978618i \(-0.565943\pi\)
−0.205688 + 0.978618i \(0.565943\pi\)
\(72\) 0 0
\(73\) 1.41070 0.165110 0.0825552 0.996586i \(-0.473692\pi\)
0.0825552 + 0.996586i \(0.473692\pi\)
\(74\) 0 0
\(75\) −6.93099 −0.800322
\(76\) 0 0
\(77\) 26.1403 2.97896
\(78\) 0 0
\(79\) 6.19548 0.697046 0.348523 0.937300i \(-0.386683\pi\)
0.348523 + 0.937300i \(0.386683\pi\)
\(80\) 0 0
\(81\) −10.6376 −1.18195
\(82\) 0 0
\(83\) −2.62892 −0.288561 −0.144281 0.989537i \(-0.546087\pi\)
−0.144281 + 0.989537i \(0.546087\pi\)
\(84\) 0 0
\(85\) −15.3510 −1.66505
\(86\) 0 0
\(87\) 12.6596 1.35725
\(88\) 0 0
\(89\) −2.10047 −0.222649 −0.111324 0.993784i \(-0.535509\pi\)
−0.111324 + 0.993784i \(0.535509\pi\)
\(90\) 0 0
\(91\) −3.33912 −0.350035
\(92\) 0 0
\(93\) −11.8122 −1.22487
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.874719 −0.0888143 −0.0444071 0.999014i \(-0.514140\pi\)
−0.0444071 + 0.999014i \(0.514140\pi\)
\(98\) 0 0
\(99\) −13.2254 −1.32920
\(100\) 0 0
\(101\) −11.4556 −1.13987 −0.569936 0.821689i \(-0.693032\pi\)
−0.569936 + 0.821689i \(0.693032\pi\)
\(102\) 0 0
\(103\) 8.55696 0.843143 0.421571 0.906795i \(-0.361479\pi\)
0.421571 + 0.906795i \(0.361479\pi\)
\(104\) 0 0
\(105\) 29.3572 2.86497
\(106\) 0 0
\(107\) −6.01725 −0.581709 −0.290855 0.956767i \(-0.593940\pi\)
−0.290855 + 0.956767i \(0.593940\pi\)
\(108\) 0 0
\(109\) −19.8749 −1.90367 −0.951833 0.306616i \(-0.900803\pi\)
−0.951833 + 0.306616i \(0.900803\pi\)
\(110\) 0 0
\(111\) −15.0734 −1.43070
\(112\) 0 0
\(113\) 18.1119 1.70382 0.851912 0.523685i \(-0.175443\pi\)
0.851912 + 0.523685i \(0.175443\pi\)
\(114\) 0 0
\(115\) −11.1756 −1.04213
\(116\) 0 0
\(117\) 1.68939 0.156185
\(118\) 0 0
\(119\) 24.4621 2.24244
\(120\) 0 0
\(121\) 22.5716 2.05196
\(122\) 0 0
\(123\) 16.0594 1.44803
\(124\) 0 0
\(125\) −5.61822 −0.502509
\(126\) 0 0
\(127\) −15.6786 −1.39125 −0.695627 0.718403i \(-0.744874\pi\)
−0.695627 + 0.718403i \(0.744874\pi\)
\(128\) 0 0
\(129\) −12.7244 −1.12032
\(130\) 0 0
\(131\) 10.3981 0.908487 0.454244 0.890878i \(-0.349910\pi\)
0.454244 + 0.890878i \(0.349910\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.66845 0.401796
\(136\) 0 0
\(137\) −16.4792 −1.40791 −0.703955 0.710245i \(-0.748584\pi\)
−0.703955 + 0.710245i \(0.748584\pi\)
\(138\) 0 0
\(139\) 2.12015 0.179829 0.0899145 0.995949i \(-0.471341\pi\)
0.0899145 + 0.995949i \(0.471341\pi\)
\(140\) 0 0
\(141\) −2.28501 −0.192433
\(142\) 0 0
\(143\) −4.28838 −0.358613
\(144\) 0 0
\(145\) −15.5942 −1.29503
\(146\) 0 0
\(147\) −30.6924 −2.53147
\(148\) 0 0
\(149\) 15.5374 1.27288 0.636439 0.771327i \(-0.280407\pi\)
0.636439 + 0.771327i \(0.280407\pi\)
\(150\) 0 0
\(151\) −2.41862 −0.196825 −0.0984124 0.995146i \(-0.531376\pi\)
−0.0984124 + 0.995146i \(0.531376\pi\)
\(152\) 0 0
\(153\) −12.3764 −1.00057
\(154\) 0 0
\(155\) 14.5504 1.16872
\(156\) 0 0
\(157\) 4.66351 0.372189 0.186094 0.982532i \(-0.440417\pi\)
0.186094 + 0.982532i \(0.440417\pi\)
\(158\) 0 0
\(159\) −2.30369 −0.182695
\(160\) 0 0
\(161\) 17.8085 1.40350
\(162\) 0 0
\(163\) 17.8733 1.39995 0.699973 0.714169i \(-0.253195\pi\)
0.699973 + 0.714169i \(0.253195\pi\)
\(164\) 0 0
\(165\) 37.7030 2.93518
\(166\) 0 0
\(167\) 11.7221 0.907087 0.453543 0.891234i \(-0.350160\pi\)
0.453543 + 0.891234i \(0.350160\pi\)
\(168\) 0 0
\(169\) −12.4522 −0.957862
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.74631 0.588941 0.294471 0.955661i \(-0.404857\pi\)
0.294471 + 0.955661i \(0.404857\pi\)
\(174\) 0 0
\(175\) −13.6049 −1.02844
\(176\) 0 0
\(177\) −0.837402 −0.0629430
\(178\) 0 0
\(179\) 14.6756 1.09690 0.548452 0.836182i \(-0.315217\pi\)
0.548452 + 0.836182i \(0.315217\pi\)
\(180\) 0 0
\(181\) −4.26090 −0.316710 −0.158355 0.987382i \(-0.550619\pi\)
−0.158355 + 0.987382i \(0.550619\pi\)
\(182\) 0 0
\(183\) −4.19455 −0.310070
\(184\) 0 0
\(185\) 18.5676 1.36512
\(186\) 0 0
\(187\) 31.4164 2.29739
\(188\) 0 0
\(189\) −7.43924 −0.541125
\(190\) 0 0
\(191\) 13.8202 0.999995 0.499998 0.866027i \(-0.333334\pi\)
0.499998 + 0.866027i \(0.333334\pi\)
\(192\) 0 0
\(193\) 26.5259 1.90938 0.954688 0.297608i \(-0.0961889\pi\)
0.954688 + 0.297608i \(0.0961889\pi\)
\(194\) 0 0
\(195\) −4.81613 −0.344890
\(196\) 0 0
\(197\) 18.9255 1.34839 0.674194 0.738554i \(-0.264491\pi\)
0.674194 + 0.738554i \(0.264491\pi\)
\(198\) 0 0
\(199\) 24.8247 1.75978 0.879889 0.475180i \(-0.157617\pi\)
0.879889 + 0.475180i \(0.157617\pi\)
\(200\) 0 0
\(201\) −29.6355 −2.09032
\(202\) 0 0
\(203\) 24.8496 1.74410
\(204\) 0 0
\(205\) −19.7822 −1.38165
\(206\) 0 0
\(207\) −9.01002 −0.626240
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −6.48981 −0.446777 −0.223388 0.974730i \(-0.571712\pi\)
−0.223388 + 0.974730i \(0.571712\pi\)
\(212\) 0 0
\(213\) 7.96693 0.545885
\(214\) 0 0
\(215\) 15.6741 1.06897
\(216\) 0 0
\(217\) −23.1863 −1.57399
\(218\) 0 0
\(219\) −3.24234 −0.219097
\(220\) 0 0
\(221\) −4.01308 −0.269949
\(222\) 0 0
\(223\) 1.44396 0.0966946 0.0483473 0.998831i \(-0.484605\pi\)
0.0483473 + 0.998831i \(0.484605\pi\)
\(224\) 0 0
\(225\) 6.88329 0.458886
\(226\) 0 0
\(227\) −6.71093 −0.445420 −0.222710 0.974885i \(-0.571490\pi\)
−0.222710 + 0.974885i \(0.571490\pi\)
\(228\) 0 0
\(229\) 5.82596 0.384990 0.192495 0.981298i \(-0.438342\pi\)
0.192495 + 0.981298i \(0.438342\pi\)
\(230\) 0 0
\(231\) −60.0803 −3.95300
\(232\) 0 0
\(233\) −3.44646 −0.225785 −0.112892 0.993607i \(-0.536012\pi\)
−0.112892 + 0.993607i \(0.536012\pi\)
\(234\) 0 0
\(235\) 2.81471 0.183612
\(236\) 0 0
\(237\) −14.2396 −0.924960
\(238\) 0 0
\(239\) −1.24263 −0.0803790 −0.0401895 0.999192i \(-0.512796\pi\)
−0.0401895 + 0.999192i \(0.512796\pi\)
\(240\) 0 0
\(241\) 14.0302 0.903765 0.451883 0.892077i \(-0.350753\pi\)
0.451883 + 0.892077i \(0.350753\pi\)
\(242\) 0 0
\(243\) 19.5024 1.25108
\(244\) 0 0
\(245\) 37.8074 2.41542
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 6.04226 0.382913
\(250\) 0 0
\(251\) −25.6175 −1.61696 −0.808481 0.588522i \(-0.799710\pi\)
−0.808481 + 0.588522i \(0.799710\pi\)
\(252\) 0 0
\(253\) 22.8712 1.43790
\(254\) 0 0
\(255\) 35.2826 2.20948
\(256\) 0 0
\(257\) 3.31950 0.207065 0.103532 0.994626i \(-0.466985\pi\)
0.103532 + 0.994626i \(0.466985\pi\)
\(258\) 0 0
\(259\) −29.5878 −1.83849
\(260\) 0 0
\(261\) −12.5724 −0.778214
\(262\) 0 0
\(263\) 6.57698 0.405554 0.202777 0.979225i \(-0.435003\pi\)
0.202777 + 0.979225i \(0.435003\pi\)
\(264\) 0 0
\(265\) 2.83773 0.174320
\(266\) 0 0
\(267\) 4.82768 0.295449
\(268\) 0 0
\(269\) −13.0093 −0.793194 −0.396597 0.917993i \(-0.629809\pi\)
−0.396597 + 0.917993i \(0.629809\pi\)
\(270\) 0 0
\(271\) −22.0499 −1.33944 −0.669718 0.742615i \(-0.733585\pi\)
−0.669718 + 0.742615i \(0.733585\pi\)
\(272\) 0 0
\(273\) 7.67457 0.464486
\(274\) 0 0
\(275\) −17.4726 −1.05364
\(276\) 0 0
\(277\) 9.59769 0.576670 0.288335 0.957530i \(-0.406898\pi\)
0.288335 + 0.957530i \(0.406898\pi\)
\(278\) 0 0
\(279\) 11.7309 0.702310
\(280\) 0 0
\(281\) 6.17182 0.368180 0.184090 0.982909i \(-0.441066\pi\)
0.184090 + 0.982909i \(0.441066\pi\)
\(282\) 0 0
\(283\) −21.4101 −1.27270 −0.636348 0.771402i \(-0.719556\pi\)
−0.636348 + 0.771402i \(0.719556\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 31.5233 1.86076
\(288\) 0 0
\(289\) 12.3995 0.729383
\(290\) 0 0
\(291\) 2.01044 0.117854
\(292\) 0 0
\(293\) 12.0192 0.702168 0.351084 0.936344i \(-0.385813\pi\)
0.351084 + 0.936344i \(0.385813\pi\)
\(294\) 0 0
\(295\) 1.03152 0.0600576
\(296\) 0 0
\(297\) −9.55411 −0.554386
\(298\) 0 0
\(299\) −2.92153 −0.168956
\(300\) 0 0
\(301\) −24.9769 −1.43965
\(302\) 0 0
\(303\) 26.3293 1.51258
\(304\) 0 0
\(305\) 5.16691 0.295857
\(306\) 0 0
\(307\) 19.8660 1.13381 0.566906 0.823783i \(-0.308140\pi\)
0.566906 + 0.823783i \(0.308140\pi\)
\(308\) 0 0
\(309\) −19.6672 −1.11883
\(310\) 0 0
\(311\) −17.4764 −0.990997 −0.495498 0.868609i \(-0.665015\pi\)
−0.495498 + 0.868609i \(0.665015\pi\)
\(312\) 0 0
\(313\) 10.4090 0.588353 0.294177 0.955751i \(-0.404955\pi\)
0.294177 + 0.955751i \(0.404955\pi\)
\(314\) 0 0
\(315\) −29.1551 −1.64271
\(316\) 0 0
\(317\) −29.1520 −1.63734 −0.818670 0.574265i \(-0.805288\pi\)
−0.818670 + 0.574265i \(0.805288\pi\)
\(318\) 0 0
\(319\) 31.9140 1.78684
\(320\) 0 0
\(321\) 13.8299 0.771912
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2.23193 0.123805
\(326\) 0 0
\(327\) 45.6801 2.52611
\(328\) 0 0
\(329\) −4.48529 −0.247282
\(330\) 0 0
\(331\) 17.7008 0.972923 0.486462 0.873702i \(-0.338287\pi\)
0.486462 + 0.873702i \(0.338287\pi\)
\(332\) 0 0
\(333\) 14.9696 0.820332
\(334\) 0 0
\(335\) 36.5054 1.99450
\(336\) 0 0
\(337\) 29.2129 1.59133 0.795665 0.605737i \(-0.207122\pi\)
0.795665 + 0.605737i \(0.207122\pi\)
\(338\) 0 0
\(339\) −41.6281 −2.26093
\(340\) 0 0
\(341\) −29.7778 −1.61256
\(342\) 0 0
\(343\) −28.6659 −1.54781
\(344\) 0 0
\(345\) 25.6858 1.38288
\(346\) 0 0
\(347\) −16.4479 −0.882971 −0.441486 0.897268i \(-0.645548\pi\)
−0.441486 + 0.897268i \(0.645548\pi\)
\(348\) 0 0
\(349\) −20.1094 −1.07643 −0.538217 0.842806i \(-0.680902\pi\)
−0.538217 + 0.842806i \(0.680902\pi\)
\(350\) 0 0
\(351\) 1.22043 0.0651416
\(352\) 0 0
\(353\) −4.68694 −0.249460 −0.124730 0.992191i \(-0.539807\pi\)
−0.124730 + 0.992191i \(0.539807\pi\)
\(354\) 0 0
\(355\) −9.81378 −0.520861
\(356\) 0 0
\(357\) −56.2233 −2.97565
\(358\) 0 0
\(359\) −5.77416 −0.304749 −0.152374 0.988323i \(-0.548692\pi\)
−0.152374 + 0.988323i \(0.548692\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −51.8781 −2.72289
\(364\) 0 0
\(365\) 3.99396 0.209053
\(366\) 0 0
\(367\) −21.6204 −1.12858 −0.564289 0.825577i \(-0.690850\pi\)
−0.564289 + 0.825577i \(0.690850\pi\)
\(368\) 0 0
\(369\) −15.9489 −0.830266
\(370\) 0 0
\(371\) −4.52196 −0.234768
\(372\) 0 0
\(373\) −19.3660 −1.00274 −0.501368 0.865234i \(-0.667170\pi\)
−0.501368 + 0.865234i \(0.667170\pi\)
\(374\) 0 0
\(375\) 12.9128 0.666815
\(376\) 0 0
\(377\) −4.07665 −0.209958
\(378\) 0 0
\(379\) −16.0287 −0.823339 −0.411669 0.911333i \(-0.635054\pi\)
−0.411669 + 0.911333i \(0.635054\pi\)
\(380\) 0 0
\(381\) 36.0355 1.84616
\(382\) 0 0
\(383\) 11.2081 0.572708 0.286354 0.958124i \(-0.407557\pi\)
0.286354 + 0.958124i \(0.407557\pi\)
\(384\) 0 0
\(385\) 74.0078 3.77179
\(386\) 0 0
\(387\) 12.6368 0.642367
\(388\) 0 0
\(389\) 22.0841 1.11971 0.559854 0.828591i \(-0.310857\pi\)
0.559854 + 0.828591i \(0.310857\pi\)
\(390\) 0 0
\(391\) 21.4029 1.08239
\(392\) 0 0
\(393\) −23.8988 −1.20554
\(394\) 0 0
\(395\) 17.5405 0.882560
\(396\) 0 0
\(397\) 14.3925 0.722337 0.361169 0.932501i \(-0.382378\pi\)
0.361169 + 0.932501i \(0.382378\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.5364 0.875728 0.437864 0.899041i \(-0.355735\pi\)
0.437864 + 0.899041i \(0.355735\pi\)
\(402\) 0 0
\(403\) 3.80378 0.189480
\(404\) 0 0
\(405\) −30.1170 −1.49652
\(406\) 0 0
\(407\) −37.9992 −1.88355
\(408\) 0 0
\(409\) 10.7768 0.532879 0.266439 0.963852i \(-0.414153\pi\)
0.266439 + 0.963852i \(0.414153\pi\)
\(410\) 0 0
\(411\) 37.8754 1.86826
\(412\) 0 0
\(413\) −1.64375 −0.0808836
\(414\) 0 0
\(415\) −7.44294 −0.365360
\(416\) 0 0
\(417\) −4.87292 −0.238628
\(418\) 0 0
\(419\) −9.77713 −0.477644 −0.238822 0.971063i \(-0.576761\pi\)
−0.238822 + 0.971063i \(0.576761\pi\)
\(420\) 0 0
\(421\) −10.6228 −0.517725 −0.258862 0.965914i \(-0.583348\pi\)
−0.258862 + 0.965914i \(0.583348\pi\)
\(422\) 0 0
\(423\) 2.26929 0.110336
\(424\) 0 0
\(425\) −16.3509 −0.793137
\(426\) 0 0
\(427\) −8.23355 −0.398450
\(428\) 0 0
\(429\) 9.85635 0.475869
\(430\) 0 0
\(431\) −12.7250 −0.612941 −0.306470 0.951880i \(-0.599148\pi\)
−0.306470 + 0.951880i \(0.599148\pi\)
\(432\) 0 0
\(433\) 34.8499 1.67478 0.837390 0.546606i \(-0.184081\pi\)
0.837390 + 0.546606i \(0.184081\pi\)
\(434\) 0 0
\(435\) 35.8415 1.71847
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −27.4710 −1.31112 −0.655559 0.755144i \(-0.727567\pi\)
−0.655559 + 0.755144i \(0.727567\pi\)
\(440\) 0 0
\(441\) 30.4812 1.45149
\(442\) 0 0
\(443\) 4.02503 0.191235 0.0956175 0.995418i \(-0.469517\pi\)
0.0956175 + 0.995418i \(0.469517\pi\)
\(444\) 0 0
\(445\) −5.94680 −0.281905
\(446\) 0 0
\(447\) −35.7110 −1.68907
\(448\) 0 0
\(449\) 25.4138 1.19935 0.599676 0.800243i \(-0.295296\pi\)
0.599676 + 0.800243i \(0.295296\pi\)
\(450\) 0 0
\(451\) 40.4849 1.90636
\(452\) 0 0
\(453\) 5.55893 0.261181
\(454\) 0 0
\(455\) −9.45365 −0.443194
\(456\) 0 0
\(457\) −9.86656 −0.461538 −0.230769 0.973009i \(-0.574124\pi\)
−0.230769 + 0.973009i \(0.574124\pi\)
\(458\) 0 0
\(459\) −8.94076 −0.417319
\(460\) 0 0
\(461\) 0.237626 0.0110673 0.00553367 0.999985i \(-0.498239\pi\)
0.00553367 + 0.999985i \(0.498239\pi\)
\(462\) 0 0
\(463\) 9.32971 0.433588 0.216794 0.976217i \(-0.430440\pi\)
0.216794 + 0.976217i \(0.430440\pi\)
\(464\) 0 0
\(465\) −33.4424 −1.55086
\(466\) 0 0
\(467\) 24.7580 1.14567 0.572833 0.819672i \(-0.305844\pi\)
0.572833 + 0.819672i \(0.305844\pi\)
\(468\) 0 0
\(469\) −58.1719 −2.68613
\(470\) 0 0
\(471\) −10.7185 −0.493884
\(472\) 0 0
\(473\) −32.0775 −1.47493
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.28784 0.104753
\(478\) 0 0
\(479\) −16.0531 −0.733487 −0.366743 0.930322i \(-0.619527\pi\)
−0.366743 + 0.930322i \(0.619527\pi\)
\(480\) 0 0
\(481\) 4.85396 0.221321
\(482\) 0 0
\(483\) −40.9307 −1.86241
\(484\) 0 0
\(485\) −2.47649 −0.112452
\(486\) 0 0
\(487\) 35.2897 1.59913 0.799565 0.600580i \(-0.205064\pi\)
0.799565 + 0.600580i \(0.205064\pi\)
\(488\) 0 0
\(489\) −41.0797 −1.85769
\(490\) 0 0
\(491\) 4.55133 0.205399 0.102699 0.994712i \(-0.467252\pi\)
0.102699 + 0.994712i \(0.467252\pi\)
\(492\) 0 0
\(493\) 29.8652 1.34506
\(494\) 0 0
\(495\) −37.4435 −1.68296
\(496\) 0 0
\(497\) 15.6384 0.701478
\(498\) 0 0
\(499\) −22.7080 −1.01655 −0.508276 0.861194i \(-0.669717\pi\)
−0.508276 + 0.861194i \(0.669717\pi\)
\(500\) 0 0
\(501\) −26.9420 −1.20368
\(502\) 0 0
\(503\) −30.7686 −1.37190 −0.685951 0.727648i \(-0.740614\pi\)
−0.685951 + 0.727648i \(0.740614\pi\)
\(504\) 0 0
\(505\) −32.4328 −1.44324
\(506\) 0 0
\(507\) 28.6199 1.27106
\(508\) 0 0
\(509\) −13.5449 −0.600366 −0.300183 0.953882i \(-0.597048\pi\)
−0.300183 + 0.953882i \(0.597048\pi\)
\(510\) 0 0
\(511\) −6.36443 −0.281546
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 24.2263 1.06754
\(516\) 0 0
\(517\) −5.76039 −0.253342
\(518\) 0 0
\(519\) −17.8040 −0.781508
\(520\) 0 0
\(521\) 9.72420 0.426025 0.213013 0.977049i \(-0.431672\pi\)
0.213013 + 0.977049i \(0.431672\pi\)
\(522\) 0 0
\(523\) −27.0164 −1.18135 −0.590673 0.806911i \(-0.701138\pi\)
−0.590673 + 0.806911i \(0.701138\pi\)
\(524\) 0 0
\(525\) 31.2694 1.36471
\(526\) 0 0
\(527\) −27.8662 −1.21387
\(528\) 0 0
\(529\) −7.41865 −0.322550
\(530\) 0 0
\(531\) 0.831639 0.0360901
\(532\) 0 0
\(533\) −5.17148 −0.224002
\(534\) 0 0
\(535\) −17.0359 −0.736527
\(536\) 0 0
\(537\) −33.7301 −1.45556
\(538\) 0 0
\(539\) −77.3739 −3.33273
\(540\) 0 0
\(541\) −28.9405 −1.24425 −0.622124 0.782919i \(-0.713730\pi\)
−0.622124 + 0.782919i \(0.713730\pi\)
\(542\) 0 0
\(543\) 9.79317 0.420265
\(544\) 0 0
\(545\) −56.2694 −2.41031
\(546\) 0 0
\(547\) −27.9270 −1.19407 −0.597036 0.802214i \(-0.703655\pi\)
−0.597036 + 0.802214i \(0.703655\pi\)
\(548\) 0 0
\(549\) 4.16569 0.177787
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −27.9511 −1.18860
\(554\) 0 0
\(555\) −42.6755 −1.81147
\(556\) 0 0
\(557\) 4.24684 0.179945 0.0899723 0.995944i \(-0.471322\pi\)
0.0899723 + 0.995944i \(0.471322\pi\)
\(558\) 0 0
\(559\) 4.09754 0.173307
\(560\) 0 0
\(561\) −72.2068 −3.04857
\(562\) 0 0
\(563\) −25.7131 −1.08368 −0.541840 0.840482i \(-0.682272\pi\)
−0.541840 + 0.840482i \(0.682272\pi\)
\(564\) 0 0
\(565\) 51.2781 2.15728
\(566\) 0 0
\(567\) 47.9918 2.01547
\(568\) 0 0
\(569\) 42.0218 1.76165 0.880823 0.473446i \(-0.156990\pi\)
0.880823 + 0.473446i \(0.156990\pi\)
\(570\) 0 0
\(571\) 29.0050 1.21382 0.606910 0.794770i \(-0.292409\pi\)
0.606910 + 0.794770i \(0.292409\pi\)
\(572\) 0 0
\(573\) −31.7641 −1.32697
\(574\) 0 0
\(575\) −11.9035 −0.496411
\(576\) 0 0
\(577\) 12.9779 0.540278 0.270139 0.962821i \(-0.412930\pi\)
0.270139 + 0.962821i \(0.412930\pi\)
\(578\) 0 0
\(579\) −60.9667 −2.53369
\(580\) 0 0
\(581\) 11.8604 0.492054
\(582\) 0 0
\(583\) −5.80749 −0.240522
\(584\) 0 0
\(585\) 4.78298 0.197752
\(586\) 0 0
\(587\) 2.06328 0.0851605 0.0425802 0.999093i \(-0.486442\pi\)
0.0425802 + 0.999093i \(0.486442\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −43.4981 −1.78927
\(592\) 0 0
\(593\) 35.9271 1.47535 0.737675 0.675156i \(-0.235924\pi\)
0.737675 + 0.675156i \(0.235924\pi\)
\(594\) 0 0
\(595\) 69.2567 2.83925
\(596\) 0 0
\(597\) −57.0567 −2.33518
\(598\) 0 0
\(599\) −5.04596 −0.206172 −0.103086 0.994672i \(-0.532872\pi\)
−0.103086 + 0.994672i \(0.532872\pi\)
\(600\) 0 0
\(601\) −46.0189 −1.87715 −0.938575 0.345076i \(-0.887853\pi\)
−0.938575 + 0.345076i \(0.887853\pi\)
\(602\) 0 0
\(603\) 29.4315 1.19854
\(604\) 0 0
\(605\) 63.9042 2.59808
\(606\) 0 0
\(607\) 40.0288 1.62472 0.812359 0.583157i \(-0.198183\pi\)
0.812359 + 0.583157i \(0.198183\pi\)
\(608\) 0 0
\(609\) −57.1140 −2.31437
\(610\) 0 0
\(611\) 0.735824 0.0297682
\(612\) 0 0
\(613\) −4.61647 −0.186457 −0.0932286 0.995645i \(-0.529719\pi\)
−0.0932286 + 0.995645i \(0.529719\pi\)
\(614\) 0 0
\(615\) 45.4671 1.83341
\(616\) 0 0
\(617\) −3.01385 −0.121333 −0.0606666 0.998158i \(-0.519323\pi\)
−0.0606666 + 0.998158i \(0.519323\pi\)
\(618\) 0 0
\(619\) −21.0232 −0.844996 −0.422498 0.906364i \(-0.638847\pi\)
−0.422498 + 0.906364i \(0.638847\pi\)
\(620\) 0 0
\(621\) −6.50889 −0.261193
\(622\) 0 0
\(623\) 9.47632 0.379661
\(624\) 0 0
\(625\) −30.9842 −1.23937
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −35.5597 −1.41786
\(630\) 0 0
\(631\) 27.2081 1.08314 0.541568 0.840657i \(-0.317831\pi\)
0.541568 + 0.840657i \(0.317831\pi\)
\(632\) 0 0
\(633\) 14.9161 0.592860
\(634\) 0 0
\(635\) −44.3891 −1.76153
\(636\) 0 0
\(637\) 9.88363 0.391604
\(638\) 0 0
\(639\) −7.91210 −0.312998
\(640\) 0 0
\(641\) −10.5546 −0.416880 −0.208440 0.978035i \(-0.566839\pi\)
−0.208440 + 0.978035i \(0.566839\pi\)
\(642\) 0 0
\(643\) −42.1222 −1.66114 −0.830569 0.556916i \(-0.811984\pi\)
−0.830569 + 0.556916i \(0.811984\pi\)
\(644\) 0 0
\(645\) −36.0251 −1.41849
\(646\) 0 0
\(647\) 20.1644 0.792743 0.396371 0.918090i \(-0.370269\pi\)
0.396371 + 0.918090i \(0.370269\pi\)
\(648\) 0 0
\(649\) −2.11104 −0.0828657
\(650\) 0 0
\(651\) 53.2910 2.08864
\(652\) 0 0
\(653\) −18.3945 −0.719834 −0.359917 0.932984i \(-0.617195\pi\)
−0.359917 + 0.932984i \(0.617195\pi\)
\(654\) 0 0
\(655\) 29.4389 1.15027
\(656\) 0 0
\(657\) 3.22002 0.125625
\(658\) 0 0
\(659\) 10.7294 0.417956 0.208978 0.977920i \(-0.432986\pi\)
0.208978 + 0.977920i \(0.432986\pi\)
\(660\) 0 0
\(661\) 41.0944 1.59839 0.799194 0.601073i \(-0.205260\pi\)
0.799194 + 0.601073i \(0.205260\pi\)
\(662\) 0 0
\(663\) 9.22360 0.358215
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 21.7419 0.841852
\(668\) 0 0
\(669\) −3.31877 −0.128311
\(670\) 0 0
\(671\) −10.5742 −0.408214
\(672\) 0 0
\(673\) 11.4764 0.442382 0.221191 0.975231i \(-0.429006\pi\)
0.221191 + 0.975231i \(0.429006\pi\)
\(674\) 0 0
\(675\) 4.97253 0.191393
\(676\) 0 0
\(677\) 9.66705 0.371535 0.185767 0.982594i \(-0.440523\pi\)
0.185767 + 0.982594i \(0.440523\pi\)
\(678\) 0 0
\(679\) 3.94632 0.151446
\(680\) 0 0
\(681\) 15.4243 0.591060
\(682\) 0 0
\(683\) −47.4759 −1.81661 −0.908307 0.418304i \(-0.862625\pi\)
−0.908307 + 0.418304i \(0.862625\pi\)
\(684\) 0 0
\(685\) −46.6555 −1.78262
\(686\) 0 0
\(687\) −13.3903 −0.510871
\(688\) 0 0
\(689\) 0.741840 0.0282619
\(690\) 0 0
\(691\) −36.0080 −1.36981 −0.684905 0.728632i \(-0.740156\pi\)
−0.684905 + 0.728632i \(0.740156\pi\)
\(692\) 0 0
\(693\) 59.6669 2.26656
\(694\) 0 0
\(695\) 6.00254 0.227689
\(696\) 0 0
\(697\) 37.8859 1.43503
\(698\) 0 0
\(699\) 7.92128 0.299610
\(700\) 0 0
\(701\) 30.1889 1.14022 0.570109 0.821569i \(-0.306901\pi\)
0.570109 + 0.821569i \(0.306901\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −6.46929 −0.243647
\(706\) 0 0
\(707\) 51.6822 1.94371
\(708\) 0 0
\(709\) −4.00549 −0.150429 −0.0752147 0.997167i \(-0.523964\pi\)
−0.0752147 + 0.997167i \(0.523964\pi\)
\(710\) 0 0
\(711\) 14.1416 0.530351
\(712\) 0 0
\(713\) −20.2866 −0.759740
\(714\) 0 0
\(715\) −12.1412 −0.454055
\(716\) 0 0
\(717\) 2.85604 0.106661
\(718\) 0 0
\(719\) 23.8085 0.887908 0.443954 0.896050i \(-0.353575\pi\)
0.443954 + 0.896050i \(0.353575\pi\)
\(720\) 0 0
\(721\) −38.6050 −1.43773
\(722\) 0 0
\(723\) −32.2468 −1.19927
\(724\) 0 0
\(725\) −16.6100 −0.616879
\(726\) 0 0
\(727\) −12.5631 −0.465941 −0.232970 0.972484i \(-0.574845\pi\)
−0.232970 + 0.972484i \(0.574845\pi\)
\(728\) 0 0
\(729\) −12.9113 −0.478197
\(730\) 0 0
\(731\) −30.0182 −1.11026
\(732\) 0 0
\(733\) −40.4416 −1.49374 −0.746872 0.664967i \(-0.768445\pi\)
−0.746872 + 0.664967i \(0.768445\pi\)
\(734\) 0 0
\(735\) −86.8958 −3.20520
\(736\) 0 0
\(737\) −74.7093 −2.75195
\(738\) 0 0
\(739\) 5.51605 0.202911 0.101456 0.994840i \(-0.467650\pi\)
0.101456 + 0.994840i \(0.467650\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.75575 0.101099 0.0505494 0.998722i \(-0.483903\pi\)
0.0505494 + 0.998722i \(0.483903\pi\)
\(744\) 0 0
\(745\) 43.9893 1.61164
\(746\) 0 0
\(747\) −6.00068 −0.219553
\(748\) 0 0
\(749\) 27.1470 0.991930
\(750\) 0 0
\(751\) −15.9169 −0.580816 −0.290408 0.956903i \(-0.593791\pi\)
−0.290408 + 0.956903i \(0.593791\pi\)
\(752\) 0 0
\(753\) 58.8788 2.14566
\(754\) 0 0
\(755\) −6.84757 −0.249208
\(756\) 0 0
\(757\) −10.1917 −0.370424 −0.185212 0.982699i \(-0.559297\pi\)
−0.185212 + 0.982699i \(0.559297\pi\)
\(758\) 0 0
\(759\) −52.5667 −1.90805
\(760\) 0 0
\(761\) 27.9403 1.01284 0.506418 0.862288i \(-0.330969\pi\)
0.506418 + 0.862288i \(0.330969\pi\)
\(762\) 0 0
\(763\) 89.6661 3.24613
\(764\) 0 0
\(765\) −35.0398 −1.26687
\(766\) 0 0
\(767\) 0.269662 0.00973692
\(768\) 0 0
\(769\) 31.5912 1.13921 0.569603 0.821920i \(-0.307097\pi\)
0.569603 + 0.821920i \(0.307097\pi\)
\(770\) 0 0
\(771\) −7.62948 −0.274769
\(772\) 0 0
\(773\) 28.6451 1.03029 0.515147 0.857102i \(-0.327737\pi\)
0.515147 + 0.857102i \(0.327737\pi\)
\(774\) 0 0
\(775\) 15.4982 0.556710
\(776\) 0 0
\(777\) 68.0040 2.43963
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 20.0842 0.718669
\(782\) 0 0
\(783\) −9.08239 −0.324578
\(784\) 0 0
\(785\) 13.2032 0.471244
\(786\) 0 0
\(787\) 11.7496 0.418829 0.209414 0.977827i \(-0.432844\pi\)
0.209414 + 0.977827i \(0.432844\pi\)
\(788\) 0 0
\(789\) −15.1164 −0.538159
\(790\) 0 0
\(791\) −81.7124 −2.90536
\(792\) 0 0
\(793\) 1.35074 0.0479661
\(794\) 0 0
\(795\) −6.52218 −0.231318
\(796\) 0 0
\(797\) −2.38658 −0.0845369 −0.0422685 0.999106i \(-0.513458\pi\)
−0.0422685 + 0.999106i \(0.513458\pi\)
\(798\) 0 0
\(799\) −5.39059 −0.190705
\(800\) 0 0
\(801\) −4.79445 −0.169404
\(802\) 0 0
\(803\) −8.17375 −0.288445
\(804\) 0 0
\(805\) 50.4190 1.77704
\(806\) 0 0
\(807\) 29.9005 1.05255
\(808\) 0 0
\(809\) 48.9199 1.71993 0.859965 0.510352i \(-0.170485\pi\)
0.859965 + 0.510352i \(0.170485\pi\)
\(810\) 0 0
\(811\) −36.9088 −1.29604 −0.648021 0.761622i \(-0.724403\pi\)
−0.648021 + 0.761622i \(0.724403\pi\)
\(812\) 0 0
\(813\) 50.6791 1.77739
\(814\) 0 0
\(815\) 50.6026 1.77253
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −7.62176 −0.266326
\(820\) 0 0
\(821\) −52.1507 −1.82007 −0.910036 0.414530i \(-0.863946\pi\)
−0.910036 + 0.414530i \(0.863946\pi\)
\(822\) 0 0
\(823\) 30.2084 1.05300 0.526500 0.850175i \(-0.323504\pi\)
0.526500 + 0.850175i \(0.323504\pi\)
\(824\) 0 0
\(825\) 40.1588 1.39815
\(826\) 0 0
\(827\) 27.1908 0.945517 0.472758 0.881192i \(-0.343258\pi\)
0.472758 + 0.881192i \(0.343258\pi\)
\(828\) 0 0
\(829\) 9.79460 0.340180 0.170090 0.985428i \(-0.445594\pi\)
0.170090 + 0.985428i \(0.445594\pi\)
\(830\) 0 0
\(831\) −22.0592 −0.765224
\(832\) 0 0
\(833\) −72.4067 −2.50874
\(834\) 0 0
\(835\) 33.1875 1.14850
\(836\) 0 0
\(837\) 8.47446 0.292920
\(838\) 0 0
\(839\) −3.74154 −0.129172 −0.0645861 0.997912i \(-0.520573\pi\)
−0.0645861 + 0.997912i \(0.520573\pi\)
\(840\) 0 0
\(841\) 1.33834 0.0461496
\(842\) 0 0
\(843\) −14.1852 −0.488564
\(844\) 0 0
\(845\) −35.2545 −1.21279
\(846\) 0 0
\(847\) −101.832 −3.49900
\(848\) 0 0
\(849\) 49.2085 1.68883
\(850\) 0 0
\(851\) −25.8875 −0.887413
\(852\) 0 0
\(853\) 43.6533 1.49466 0.747330 0.664453i \(-0.231335\pi\)
0.747330 + 0.664453i \(0.231335\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −37.3889 −1.27718 −0.638591 0.769547i \(-0.720482\pi\)
−0.638591 + 0.769547i \(0.720482\pi\)
\(858\) 0 0
\(859\) 18.2210 0.621691 0.310846 0.950460i \(-0.399388\pi\)
0.310846 + 0.950460i \(0.399388\pi\)
\(860\) 0 0
\(861\) −72.4525 −2.46918
\(862\) 0 0
\(863\) 23.5925 0.803099 0.401550 0.915837i \(-0.368472\pi\)
0.401550 + 0.915837i \(0.368472\pi\)
\(864\) 0 0
\(865\) 21.9312 0.745684
\(866\) 0 0
\(867\) −28.4988 −0.967871
\(868\) 0 0
\(869\) −35.8972 −1.21773
\(870\) 0 0
\(871\) 9.54326 0.323361
\(872\) 0 0
\(873\) −1.99660 −0.0675748
\(874\) 0 0
\(875\) 25.3468 0.856877
\(876\) 0 0
\(877\) 15.1131 0.510335 0.255167 0.966897i \(-0.417869\pi\)
0.255167 + 0.966897i \(0.417869\pi\)
\(878\) 0 0
\(879\) −27.6247 −0.931757
\(880\) 0 0
\(881\) 45.7224 1.54043 0.770213 0.637786i \(-0.220150\pi\)
0.770213 + 0.637786i \(0.220150\pi\)
\(882\) 0 0
\(883\) 21.4988 0.723493 0.361747 0.932276i \(-0.382181\pi\)
0.361747 + 0.932276i \(0.382181\pi\)
\(884\) 0 0
\(885\) −2.37084 −0.0796948
\(886\) 0 0
\(887\) −6.60235 −0.221685 −0.110843 0.993838i \(-0.535355\pi\)
−0.110843 + 0.993838i \(0.535355\pi\)
\(888\) 0 0
\(889\) 70.7347 2.37237
\(890\) 0 0
\(891\) 61.6352 2.06486
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 41.5493 1.38884
\(896\) 0 0
\(897\) 6.71480 0.224201
\(898\) 0 0
\(899\) −28.3076 −0.944112
\(900\) 0 0
\(901\) −5.43466 −0.181055
\(902\) 0 0
\(903\) 57.4066 1.91037
\(904\) 0 0
\(905\) −12.0634 −0.401000
\(906\) 0 0
\(907\) 28.0852 0.932552 0.466276 0.884639i \(-0.345595\pi\)
0.466276 + 0.884639i \(0.345595\pi\)
\(908\) 0 0
\(909\) −26.1481 −0.867278
\(910\) 0 0
\(911\) 25.2342 0.836046 0.418023 0.908436i \(-0.362723\pi\)
0.418023 + 0.908436i \(0.362723\pi\)
\(912\) 0 0
\(913\) 15.2322 0.504112
\(914\) 0 0
\(915\) −11.8755 −0.392594
\(916\) 0 0
\(917\) −46.9114 −1.54915
\(918\) 0 0
\(919\) −0.131215 −0.00432837 −0.00216418 0.999998i \(-0.500689\pi\)
−0.00216418 + 0.999998i \(0.500689\pi\)
\(920\) 0 0
\(921\) −45.6597 −1.50454
\(922\) 0 0
\(923\) −2.56553 −0.0844453
\(924\) 0 0
\(925\) 19.7770 0.650265
\(926\) 0 0
\(927\) 19.5318 0.641510
\(928\) 0 0
\(929\) 17.3446 0.569058 0.284529 0.958667i \(-0.408163\pi\)
0.284529 + 0.958667i \(0.408163\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 40.1675 1.31503
\(934\) 0 0
\(935\) 88.9454 2.90883
\(936\) 0 0
\(937\) 37.0190 1.20936 0.604680 0.796469i \(-0.293301\pi\)
0.604680 + 0.796469i \(0.293301\pi\)
\(938\) 0 0
\(939\) −23.9239 −0.780729
\(940\) 0 0
\(941\) −4.89144 −0.159456 −0.0797282 0.996817i \(-0.525405\pi\)
−0.0797282 + 0.996817i \(0.525405\pi\)
\(942\) 0 0
\(943\) 27.5810 0.898160
\(944\) 0 0
\(945\) −21.0618 −0.685142
\(946\) 0 0
\(947\) −4.12717 −0.134115 −0.0670575 0.997749i \(-0.521361\pi\)
−0.0670575 + 0.997749i \(0.521361\pi\)
\(948\) 0 0
\(949\) 1.04410 0.0338930
\(950\) 0 0
\(951\) 67.0025 2.17270
\(952\) 0 0
\(953\) −40.6091 −1.31546 −0.657729 0.753255i \(-0.728483\pi\)
−0.657729 + 0.753255i \(0.728483\pi\)
\(954\) 0 0
\(955\) 39.1275 1.26614
\(956\) 0 0
\(957\) −73.3507 −2.37109
\(958\) 0 0
\(959\) 74.3462 2.40077
\(960\) 0 0
\(961\) −4.58717 −0.147973
\(962\) 0 0
\(963\) −13.7348 −0.442596
\(964\) 0 0
\(965\) 75.0997 2.41754
\(966\) 0 0
\(967\) −6.60049 −0.212257 −0.106129 0.994352i \(-0.533846\pi\)
−0.106129 + 0.994352i \(0.533846\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −49.9885 −1.60421 −0.802103 0.597186i \(-0.796286\pi\)
−0.802103 + 0.597186i \(0.796286\pi\)
\(972\) 0 0
\(973\) −9.56514 −0.306644
\(974\) 0 0
\(975\) −5.12983 −0.164286
\(976\) 0 0
\(977\) −18.0781 −0.578370 −0.289185 0.957273i \(-0.593384\pi\)
−0.289185 + 0.957273i \(0.593384\pi\)
\(978\) 0 0
\(979\) 12.1703 0.388965
\(980\) 0 0
\(981\) −45.3657 −1.44841
\(982\) 0 0
\(983\) −27.0749 −0.863556 −0.431778 0.901980i \(-0.642114\pi\)
−0.431778 + 0.901980i \(0.642114\pi\)
\(984\) 0 0
\(985\) 53.5817 1.70725
\(986\) 0 0
\(987\) 10.3089 0.328136
\(988\) 0 0
\(989\) −21.8533 −0.694895
\(990\) 0 0
\(991\) 26.5909 0.844688 0.422344 0.906436i \(-0.361207\pi\)
0.422344 + 0.906436i \(0.361207\pi\)
\(992\) 0 0
\(993\) −40.6832 −1.29104
\(994\) 0 0
\(995\) 70.2833 2.22813
\(996\) 0 0
\(997\) 8.26982 0.261908 0.130954 0.991388i \(-0.458196\pi\)
0.130954 + 0.991388i \(0.458196\pi\)
\(998\) 0 0
\(999\) 10.8142 0.342145
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.u.1.1 yes 6
4.3 odd 2 5776.2.a.bx.1.6 6
19.18 odd 2 2888.2.a.t.1.6 6
76.75 even 2 5776.2.a.bz.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2888.2.a.t.1.6 6 19.18 odd 2
2888.2.a.u.1.1 yes 6 1.1 even 1 trivial
5776.2.a.bx.1.6 6 4.3 odd 2
5776.2.a.bz.1.1 6 76.75 even 2