Properties

Label 2888.2.a.r.1.3
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,1,0,1,0,-2,0,6,0,4,0,-1,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.470683\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.24914 q^{3} +0.470683 q^{5} -3.30777 q^{7} +7.55691 q^{9} +1.47068 q^{11} -2.83709 q^{13} +1.52932 q^{15} +6.71982 q^{17} -10.7474 q^{21} +0.470683 q^{23} -4.77846 q^{25} +14.8061 q^{27} +4.96896 q^{29} +6.74742 q^{31} +4.77846 q^{33} -1.55691 q^{35} +4.74742 q^{37} -9.21811 q^{39} -0.501719 q^{41} +3.89572 q^{43} +3.55691 q^{45} +11.9103 q^{47} +3.94137 q^{49} +21.8337 q^{51} -4.71982 q^{53} +0.692226 q^{55} +7.24914 q^{59} -12.5259 q^{61} -24.9966 q^{63} -1.33537 q^{65} -0.633593 q^{67} +1.52932 q^{69} -3.77846 q^{71} -3.94137 q^{73} -15.5259 q^{75} -4.86469 q^{77} -8.83709 q^{79} +25.4362 q^{81} +9.14486 q^{83} +3.16291 q^{85} +16.1449 q^{87} +2.95436 q^{89} +9.38445 q^{91} +21.9233 q^{93} +0.0586332 q^{97} +11.1138 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} + q^{5} - 2 q^{7} + 6 q^{9} + 4 q^{11} - q^{13} + 5 q^{15} + 11 q^{17} - 6 q^{21} + q^{23} - 6 q^{25} + 19 q^{27} - 3 q^{29} - 6 q^{31} + 6 q^{33} + 12 q^{35} - 12 q^{37} - q^{39} - 19 q^{41}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.24914 1.87589 0.937946 0.346781i \(-0.112725\pi\)
0.937946 + 0.346781i \(0.112725\pi\)
\(4\) 0 0
\(5\) 0.470683 0.210496 0.105248 0.994446i \(-0.466436\pi\)
0.105248 + 0.994446i \(0.466436\pi\)
\(6\) 0 0
\(7\) −3.30777 −1.25022 −0.625110 0.780536i \(-0.714946\pi\)
−0.625110 + 0.780536i \(0.714946\pi\)
\(8\) 0 0
\(9\) 7.55691 2.51897
\(10\) 0 0
\(11\) 1.47068 0.443428 0.221714 0.975112i \(-0.428835\pi\)
0.221714 + 0.975112i \(0.428835\pi\)
\(12\) 0 0
\(13\) −2.83709 −0.786867 −0.393434 0.919353i \(-0.628713\pi\)
−0.393434 + 0.919353i \(0.628713\pi\)
\(14\) 0 0
\(15\) 1.52932 0.394868
\(16\) 0 0
\(17\) 6.71982 1.62980 0.814898 0.579604i \(-0.196793\pi\)
0.814898 + 0.579604i \(0.196793\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) −10.7474 −2.34528
\(22\) 0 0
\(23\) 0.470683 0.0981443 0.0490721 0.998795i \(-0.484374\pi\)
0.0490721 + 0.998795i \(0.484374\pi\)
\(24\) 0 0
\(25\) −4.77846 −0.955691
\(26\) 0 0
\(27\) 14.8061 2.84943
\(28\) 0 0
\(29\) 4.96896 0.922714 0.461357 0.887215i \(-0.347363\pi\)
0.461357 + 0.887215i \(0.347363\pi\)
\(30\) 0 0
\(31\) 6.74742 1.21187 0.605936 0.795513i \(-0.292799\pi\)
0.605936 + 0.795513i \(0.292799\pi\)
\(32\) 0 0
\(33\) 4.77846 0.831823
\(34\) 0 0
\(35\) −1.55691 −0.263167
\(36\) 0 0
\(37\) 4.74742 0.780471 0.390236 0.920715i \(-0.372394\pi\)
0.390236 + 0.920715i \(0.372394\pi\)
\(38\) 0 0
\(39\) −9.21811 −1.47608
\(40\) 0 0
\(41\) −0.501719 −0.0783553 −0.0391777 0.999232i \(-0.512474\pi\)
−0.0391777 + 0.999232i \(0.512474\pi\)
\(42\) 0 0
\(43\) 3.89572 0.594092 0.297046 0.954863i \(-0.403998\pi\)
0.297046 + 0.954863i \(0.403998\pi\)
\(44\) 0 0
\(45\) 3.55691 0.530233
\(46\) 0 0
\(47\) 11.9103 1.73730 0.868650 0.495426i \(-0.164988\pi\)
0.868650 + 0.495426i \(0.164988\pi\)
\(48\) 0 0
\(49\) 3.94137 0.563052
\(50\) 0 0
\(51\) 21.8337 3.05732
\(52\) 0 0
\(53\) −4.71982 −0.648318 −0.324159 0.946003i \(-0.605081\pi\)
−0.324159 + 0.946003i \(0.605081\pi\)
\(54\) 0 0
\(55\) 0.692226 0.0933398
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.24914 0.943758 0.471879 0.881663i \(-0.343576\pi\)
0.471879 + 0.881663i \(0.343576\pi\)
\(60\) 0 0
\(61\) −12.5259 −1.60377 −0.801887 0.597475i \(-0.796171\pi\)
−0.801887 + 0.597475i \(0.796171\pi\)
\(62\) 0 0
\(63\) −24.9966 −3.14927
\(64\) 0 0
\(65\) −1.33537 −0.165632
\(66\) 0 0
\(67\) −0.633593 −0.0774057 −0.0387029 0.999251i \(-0.512323\pi\)
−0.0387029 + 0.999251i \(0.512323\pi\)
\(68\) 0 0
\(69\) 1.52932 0.184108
\(70\) 0 0
\(71\) −3.77846 −0.448420 −0.224210 0.974541i \(-0.571980\pi\)
−0.224210 + 0.974541i \(0.571980\pi\)
\(72\) 0 0
\(73\) −3.94137 −0.461302 −0.230651 0.973037i \(-0.574086\pi\)
−0.230651 + 0.973037i \(0.574086\pi\)
\(74\) 0 0
\(75\) −15.5259 −1.79277
\(76\) 0 0
\(77\) −4.86469 −0.554383
\(78\) 0 0
\(79\) −8.83709 −0.994250 −0.497125 0.867679i \(-0.665611\pi\)
−0.497125 + 0.867679i \(0.665611\pi\)
\(80\) 0 0
\(81\) 25.4362 2.82625
\(82\) 0 0
\(83\) 9.14486 1.00378 0.501890 0.864932i \(-0.332638\pi\)
0.501890 + 0.864932i \(0.332638\pi\)
\(84\) 0 0
\(85\) 3.16291 0.343066
\(86\) 0 0
\(87\) 16.1449 1.73091
\(88\) 0 0
\(89\) 2.95436 0.313161 0.156581 0.987665i \(-0.449953\pi\)
0.156581 + 0.987665i \(0.449953\pi\)
\(90\) 0 0
\(91\) 9.38445 0.983758
\(92\) 0 0
\(93\) 21.9233 2.27334
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.0586332 0.00595330 0.00297665 0.999996i \(-0.499053\pi\)
0.00297665 + 0.999996i \(0.499053\pi\)
\(98\) 0 0
\(99\) 11.1138 1.11698
\(100\) 0 0
\(101\) 11.5845 1.15270 0.576351 0.817202i \(-0.304476\pi\)
0.576351 + 0.817202i \(0.304476\pi\)
\(102\) 0 0
\(103\) −8.17246 −0.805257 −0.402628 0.915364i \(-0.631903\pi\)
−0.402628 + 0.915364i \(0.631903\pi\)
\(104\) 0 0
\(105\) −5.05863 −0.493672
\(106\) 0 0
\(107\) 0.498281 0.0481706 0.0240853 0.999710i \(-0.492333\pi\)
0.0240853 + 0.999710i \(0.492333\pi\)
\(108\) 0 0
\(109\) −8.39400 −0.804000 −0.402000 0.915640i \(-0.631685\pi\)
−0.402000 + 0.915640i \(0.631685\pi\)
\(110\) 0 0
\(111\) 15.4250 1.46408
\(112\) 0 0
\(113\) 4.83365 0.454712 0.227356 0.973812i \(-0.426992\pi\)
0.227356 + 0.973812i \(0.426992\pi\)
\(114\) 0 0
\(115\) 0.221543 0.0206590
\(116\) 0 0
\(117\) −21.4396 −1.98210
\(118\) 0 0
\(119\) −22.2277 −2.03761
\(120\) 0 0
\(121\) −8.83709 −0.803372
\(122\) 0 0
\(123\) −1.63016 −0.146986
\(124\) 0 0
\(125\) −4.60256 −0.411665
\(126\) 0 0
\(127\) −18.4492 −1.63710 −0.818551 0.574434i \(-0.805222\pi\)
−0.818551 + 0.574434i \(0.805222\pi\)
\(128\) 0 0
\(129\) 12.6578 1.11445
\(130\) 0 0
\(131\) 0.868126 0.0758485 0.0379243 0.999281i \(-0.487925\pi\)
0.0379243 + 0.999281i \(0.487925\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 6.96896 0.599793
\(136\) 0 0
\(137\) 4.55691 0.389323 0.194662 0.980870i \(-0.437639\pi\)
0.194662 + 0.980870i \(0.437639\pi\)
\(138\) 0 0
\(139\) −16.3078 −1.38321 −0.691604 0.722277i \(-0.743095\pi\)
−0.691604 + 0.722277i \(0.743095\pi\)
\(140\) 0 0
\(141\) 38.6983 3.25899
\(142\) 0 0
\(143\) −4.17246 −0.348919
\(144\) 0 0
\(145\) 2.33881 0.194228
\(146\) 0 0
\(147\) 12.8061 1.05623
\(148\) 0 0
\(149\) 20.9069 1.71276 0.856380 0.516347i \(-0.172708\pi\)
0.856380 + 0.516347i \(0.172708\pi\)
\(150\) 0 0
\(151\) 1.75086 0.142483 0.0712415 0.997459i \(-0.477304\pi\)
0.0712415 + 0.997459i \(0.477304\pi\)
\(152\) 0 0
\(153\) 50.7811 4.10541
\(154\) 0 0
\(155\) 3.17590 0.255094
\(156\) 0 0
\(157\) −0.159472 −0.0127272 −0.00636362 0.999980i \(-0.502026\pi\)
−0.00636362 + 0.999980i \(0.502026\pi\)
\(158\) 0 0
\(159\) −15.3354 −1.21617
\(160\) 0 0
\(161\) −1.55691 −0.122702
\(162\) 0 0
\(163\) −0.0862308 −0.00675412 −0.00337706 0.999994i \(-0.501075\pi\)
−0.00337706 + 0.999994i \(0.501075\pi\)
\(164\) 0 0
\(165\) 2.24914 0.175095
\(166\) 0 0
\(167\) −6.27674 −0.485709 −0.242854 0.970063i \(-0.578084\pi\)
−0.242854 + 0.970063i \(0.578084\pi\)
\(168\) 0 0
\(169\) −4.95092 −0.380840
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.8371 −0.823929 −0.411964 0.911200i \(-0.635157\pi\)
−0.411964 + 0.911200i \(0.635157\pi\)
\(174\) 0 0
\(175\) 15.8061 1.19483
\(176\) 0 0
\(177\) 23.5535 1.77039
\(178\) 0 0
\(179\) 7.08967 0.529907 0.264953 0.964261i \(-0.414643\pi\)
0.264953 + 0.964261i \(0.414643\pi\)
\(180\) 0 0
\(181\) −12.3534 −0.918222 −0.459111 0.888379i \(-0.651832\pi\)
−0.459111 + 0.888379i \(0.651832\pi\)
\(182\) 0 0
\(183\) −40.6983 −3.00851
\(184\) 0 0
\(185\) 2.23453 0.164286
\(186\) 0 0
\(187\) 9.88273 0.722697
\(188\) 0 0
\(189\) −48.9751 −3.56241
\(190\) 0 0
\(191\) 8.99656 0.650968 0.325484 0.945547i \(-0.394473\pi\)
0.325484 + 0.945547i \(0.394473\pi\)
\(192\) 0 0
\(193\) −3.16291 −0.227671 −0.113836 0.993500i \(-0.536314\pi\)
−0.113836 + 0.993500i \(0.536314\pi\)
\(194\) 0 0
\(195\) −4.33881 −0.310709
\(196\) 0 0
\(197\) −21.2457 −1.51369 −0.756847 0.653592i \(-0.773261\pi\)
−0.756847 + 0.653592i \(0.773261\pi\)
\(198\) 0 0
\(199\) 9.89572 0.701489 0.350745 0.936471i \(-0.385929\pi\)
0.350745 + 0.936471i \(0.385929\pi\)
\(200\) 0 0
\(201\) −2.05863 −0.145205
\(202\) 0 0
\(203\) −16.4362 −1.15360
\(204\) 0 0
\(205\) −0.236151 −0.0164935
\(206\) 0 0
\(207\) 3.55691 0.247223
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 19.1008 1.31496 0.657478 0.753474i \(-0.271623\pi\)
0.657478 + 0.753474i \(0.271623\pi\)
\(212\) 0 0
\(213\) −12.2767 −0.841188
\(214\) 0 0
\(215\) 1.83365 0.125054
\(216\) 0 0
\(217\) −22.3189 −1.51511
\(218\) 0 0
\(219\) −12.8061 −0.865353
\(220\) 0 0
\(221\) −19.0647 −1.28243
\(222\) 0 0
\(223\) −16.9690 −1.13633 −0.568163 0.822916i \(-0.692346\pi\)
−0.568163 + 0.822916i \(0.692346\pi\)
\(224\) 0 0
\(225\) −36.1104 −2.40736
\(226\) 0 0
\(227\) 0.646583 0.0429152 0.0214576 0.999770i \(-0.493169\pi\)
0.0214576 + 0.999770i \(0.493169\pi\)
\(228\) 0 0
\(229\) −8.55348 −0.565230 −0.282615 0.959233i \(-0.591202\pi\)
−0.282615 + 0.959233i \(0.591202\pi\)
\(230\) 0 0
\(231\) −15.8061 −1.03996
\(232\) 0 0
\(233\) −3.70683 −0.242843 −0.121421 0.992601i \(-0.538745\pi\)
−0.121421 + 0.992601i \(0.538745\pi\)
\(234\) 0 0
\(235\) 5.60600 0.365695
\(236\) 0 0
\(237\) −28.7129 −1.86511
\(238\) 0 0
\(239\) 15.7655 1.01978 0.509892 0.860239i \(-0.329685\pi\)
0.509892 + 0.860239i \(0.329685\pi\)
\(240\) 0 0
\(241\) −16.1138 −1.03798 −0.518991 0.854779i \(-0.673692\pi\)
−0.518991 + 0.854779i \(0.673692\pi\)
\(242\) 0 0
\(243\) 38.2277 2.45231
\(244\) 0 0
\(245\) 1.85514 0.118520
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 29.7129 1.88298
\(250\) 0 0
\(251\) −15.6561 −0.988206 −0.494103 0.869403i \(-0.664504\pi\)
−0.494103 + 0.869403i \(0.664504\pi\)
\(252\) 0 0
\(253\) 0.692226 0.0435199
\(254\) 0 0
\(255\) 10.2767 0.643554
\(256\) 0 0
\(257\) −27.8172 −1.73519 −0.867595 0.497271i \(-0.834336\pi\)
−0.867595 + 0.497271i \(0.834336\pi\)
\(258\) 0 0
\(259\) −15.7034 −0.975762
\(260\) 0 0
\(261\) 37.5500 2.32429
\(262\) 0 0
\(263\) 16.8517 1.03912 0.519560 0.854434i \(-0.326096\pi\)
0.519560 + 0.854434i \(0.326096\pi\)
\(264\) 0 0
\(265\) −2.22154 −0.136468
\(266\) 0 0
\(267\) 9.59912 0.587457
\(268\) 0 0
\(269\) −29.6251 −1.80627 −0.903137 0.429352i \(-0.858742\pi\)
−0.903137 + 0.429352i \(0.858742\pi\)
\(270\) 0 0
\(271\) 14.4707 0.879031 0.439516 0.898235i \(-0.355150\pi\)
0.439516 + 0.898235i \(0.355150\pi\)
\(272\) 0 0
\(273\) 30.4914 1.84542
\(274\) 0 0
\(275\) −7.02760 −0.423780
\(276\) 0 0
\(277\) −12.4216 −0.746342 −0.373171 0.927763i \(-0.621729\pi\)
−0.373171 + 0.927763i \(0.621729\pi\)
\(278\) 0 0
\(279\) 50.9897 3.05267
\(280\) 0 0
\(281\) −10.2932 −0.614039 −0.307019 0.951703i \(-0.599332\pi\)
−0.307019 + 0.951703i \(0.599332\pi\)
\(282\) 0 0
\(283\) −15.8647 −0.943058 −0.471529 0.881851i \(-0.656298\pi\)
−0.471529 + 0.881851i \(0.656298\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.65957 0.0979615
\(288\) 0 0
\(289\) 28.1560 1.65624
\(290\) 0 0
\(291\) 0.190507 0.0111677
\(292\) 0 0
\(293\) −12.1579 −0.710269 −0.355135 0.934815i \(-0.615565\pi\)
−0.355135 + 0.934815i \(0.615565\pi\)
\(294\) 0 0
\(295\) 3.41205 0.198657
\(296\) 0 0
\(297\) 21.7750 1.26351
\(298\) 0 0
\(299\) −1.33537 −0.0772265
\(300\) 0 0
\(301\) −12.8862 −0.742747
\(302\) 0 0
\(303\) 37.6397 2.16234
\(304\) 0 0
\(305\) −5.89572 −0.337588
\(306\) 0 0
\(307\) −12.3009 −0.702049 −0.351025 0.936366i \(-0.614167\pi\)
−0.351025 + 0.936366i \(0.614167\pi\)
\(308\) 0 0
\(309\) −26.5535 −1.51057
\(310\) 0 0
\(311\) −0.519765 −0.0294732 −0.0147366 0.999891i \(-0.504691\pi\)
−0.0147366 + 0.999891i \(0.504691\pi\)
\(312\) 0 0
\(313\) 18.6121 1.05202 0.526009 0.850479i \(-0.323688\pi\)
0.526009 + 0.850479i \(0.323688\pi\)
\(314\) 0 0
\(315\) −11.7655 −0.662909
\(316\) 0 0
\(317\) −2.83709 −0.159347 −0.0796734 0.996821i \(-0.525388\pi\)
−0.0796734 + 0.996821i \(0.525388\pi\)
\(318\) 0 0
\(319\) 7.30777 0.409157
\(320\) 0 0
\(321\) 1.61899 0.0903629
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 13.5569 0.752002
\(326\) 0 0
\(327\) −27.2733 −1.50822
\(328\) 0 0
\(329\) −39.3967 −2.17201
\(330\) 0 0
\(331\) −19.0276 −1.04585 −0.522926 0.852378i \(-0.675159\pi\)
−0.522926 + 0.852378i \(0.675159\pi\)
\(332\) 0 0
\(333\) 35.8759 1.96598
\(334\) 0 0
\(335\) −0.298222 −0.0162936
\(336\) 0 0
\(337\) −14.7294 −0.802360 −0.401180 0.915999i \(-0.631400\pi\)
−0.401180 + 0.915999i \(0.631400\pi\)
\(338\) 0 0
\(339\) 15.7052 0.852990
\(340\) 0 0
\(341\) 9.92332 0.537378
\(342\) 0 0
\(343\) 10.1173 0.546281
\(344\) 0 0
\(345\) 0.719824 0.0387540
\(346\) 0 0
\(347\) −10.1353 −0.544092 −0.272046 0.962284i \(-0.587700\pi\)
−0.272046 + 0.962284i \(0.587700\pi\)
\(348\) 0 0
\(349\) 2.56035 0.137053 0.0685263 0.997649i \(-0.478170\pi\)
0.0685263 + 0.997649i \(0.478170\pi\)
\(350\) 0 0
\(351\) −42.0061 −2.24212
\(352\) 0 0
\(353\) 20.4458 1.08822 0.544109 0.839015i \(-0.316868\pi\)
0.544109 + 0.839015i \(0.316868\pi\)
\(354\) 0 0
\(355\) −1.77846 −0.0943907
\(356\) 0 0
\(357\) −72.2208 −3.82233
\(358\) 0 0
\(359\) −14.5879 −0.769923 −0.384961 0.922933i \(-0.625785\pi\)
−0.384961 + 0.922933i \(0.625785\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −28.7129 −1.50704
\(364\) 0 0
\(365\) −1.85514 −0.0971023
\(366\) 0 0
\(367\) 29.0794 1.51793 0.758965 0.651131i \(-0.225705\pi\)
0.758965 + 0.651131i \(0.225705\pi\)
\(368\) 0 0
\(369\) −3.79145 −0.197375
\(370\) 0 0
\(371\) 15.6121 0.810540
\(372\) 0 0
\(373\) 20.7880 1.07636 0.538181 0.842829i \(-0.319112\pi\)
0.538181 + 0.842829i \(0.319112\pi\)
\(374\) 0 0
\(375\) −14.9544 −0.772240
\(376\) 0 0
\(377\) −14.0974 −0.726053
\(378\) 0 0
\(379\) 19.7034 1.01210 0.506048 0.862505i \(-0.331106\pi\)
0.506048 + 0.862505i \(0.331106\pi\)
\(380\) 0 0
\(381\) −59.9440 −3.07103
\(382\) 0 0
\(383\) 28.4638 1.45443 0.727216 0.686408i \(-0.240814\pi\)
0.727216 + 0.686408i \(0.240814\pi\)
\(384\) 0 0
\(385\) −2.28973 −0.116695
\(386\) 0 0
\(387\) 29.4396 1.49650
\(388\) 0 0
\(389\) 3.71639 0.188428 0.0942141 0.995552i \(-0.469966\pi\)
0.0942141 + 0.995552i \(0.469966\pi\)
\(390\) 0 0
\(391\) 3.16291 0.159955
\(392\) 0 0
\(393\) 2.82066 0.142284
\(394\) 0 0
\(395\) −4.15947 −0.209286
\(396\) 0 0
\(397\) 17.6397 0.885312 0.442656 0.896692i \(-0.354036\pi\)
0.442656 + 0.896692i \(0.354036\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −30.5569 −1.52594 −0.762970 0.646434i \(-0.776259\pi\)
−0.762970 + 0.646434i \(0.776259\pi\)
\(402\) 0 0
\(403\) −19.1430 −0.953583
\(404\) 0 0
\(405\) 11.9724 0.594913
\(406\) 0 0
\(407\) 6.98195 0.346083
\(408\) 0 0
\(409\) −31.2277 −1.54411 −0.772054 0.635557i \(-0.780771\pi\)
−0.772054 + 0.635557i \(0.780771\pi\)
\(410\) 0 0
\(411\) 14.8061 0.730329
\(412\) 0 0
\(413\) −23.9785 −1.17991
\(414\) 0 0
\(415\) 4.30434 0.211292
\(416\) 0 0
\(417\) −52.9862 −2.59475
\(418\) 0 0
\(419\) −28.9966 −1.41657 −0.708287 0.705924i \(-0.750532\pi\)
−0.708287 + 0.705924i \(0.750532\pi\)
\(420\) 0 0
\(421\) 31.2587 1.52346 0.761728 0.647897i \(-0.224351\pi\)
0.761728 + 0.647897i \(0.224351\pi\)
\(422\) 0 0
\(423\) 90.0054 4.37621
\(424\) 0 0
\(425\) −32.1104 −1.55758
\(426\) 0 0
\(427\) 41.4328 2.00507
\(428\) 0 0
\(429\) −13.5569 −0.654534
\(430\) 0 0
\(431\) −14.8663 −0.716085 −0.358042 0.933705i \(-0.616556\pi\)
−0.358042 + 0.933705i \(0.616556\pi\)
\(432\) 0 0
\(433\) 39.5630 1.90128 0.950639 0.310299i \(-0.100429\pi\)
0.950639 + 0.310299i \(0.100429\pi\)
\(434\) 0 0
\(435\) 7.59912 0.364350
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −11.5845 −0.552899 −0.276449 0.961029i \(-0.589158\pi\)
−0.276449 + 0.961029i \(0.589158\pi\)
\(440\) 0 0
\(441\) 29.7846 1.41831
\(442\) 0 0
\(443\) 28.9233 1.37419 0.687094 0.726568i \(-0.258886\pi\)
0.687094 + 0.726568i \(0.258886\pi\)
\(444\) 0 0
\(445\) 1.39057 0.0659192
\(446\) 0 0
\(447\) 67.9294 3.21295
\(448\) 0 0
\(449\) 31.2147 1.47311 0.736556 0.676377i \(-0.236451\pi\)
0.736556 + 0.676377i \(0.236451\pi\)
\(450\) 0 0
\(451\) −0.737870 −0.0347449
\(452\) 0 0
\(453\) 5.68879 0.267283
\(454\) 0 0
\(455\) 4.41711 0.207077
\(456\) 0 0
\(457\) 17.2215 0.805590 0.402795 0.915290i \(-0.368039\pi\)
0.402795 + 0.915290i \(0.368039\pi\)
\(458\) 0 0
\(459\) 99.4941 4.64399
\(460\) 0 0
\(461\) −32.8302 −1.52906 −0.764528 0.644591i \(-0.777028\pi\)
−0.764528 + 0.644591i \(0.777028\pi\)
\(462\) 0 0
\(463\) 6.28973 0.292308 0.146154 0.989262i \(-0.453310\pi\)
0.146154 + 0.989262i \(0.453310\pi\)
\(464\) 0 0
\(465\) 10.3189 0.478530
\(466\) 0 0
\(467\) −9.47068 −0.438251 −0.219125 0.975697i \(-0.570320\pi\)
−0.219125 + 0.975697i \(0.570320\pi\)
\(468\) 0 0
\(469\) 2.09578 0.0967743
\(470\) 0 0
\(471\) −0.518147 −0.0238749
\(472\) 0 0
\(473\) 5.72938 0.263437
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −35.6673 −1.63309
\(478\) 0 0
\(479\) 26.0682 1.19109 0.595543 0.803324i \(-0.296937\pi\)
0.595543 + 0.803324i \(0.296937\pi\)
\(480\) 0 0
\(481\) −13.4689 −0.614127
\(482\) 0 0
\(483\) −5.05863 −0.230176
\(484\) 0 0
\(485\) 0.0275977 0.00125315
\(486\) 0 0
\(487\) 16.8939 0.765536 0.382768 0.923845i \(-0.374971\pi\)
0.382768 + 0.923845i \(0.374971\pi\)
\(488\) 0 0
\(489\) −0.280176 −0.0126700
\(490\) 0 0
\(491\) 17.8888 0.807312 0.403656 0.914911i \(-0.367739\pi\)
0.403656 + 0.914911i \(0.367739\pi\)
\(492\) 0 0
\(493\) 33.3906 1.50384
\(494\) 0 0
\(495\) 5.23109 0.235120
\(496\) 0 0
\(497\) 12.4983 0.560625
\(498\) 0 0
\(499\) −29.4216 −1.31709 −0.658546 0.752541i \(-0.728828\pi\)
−0.658546 + 0.752541i \(0.728828\pi\)
\(500\) 0 0
\(501\) −20.3940 −0.911137
\(502\) 0 0
\(503\) 9.07936 0.404828 0.202414 0.979300i \(-0.435121\pi\)
0.202414 + 0.979300i \(0.435121\pi\)
\(504\) 0 0
\(505\) 5.45264 0.242639
\(506\) 0 0
\(507\) −16.0862 −0.714415
\(508\) 0 0
\(509\) −20.3940 −0.903948 −0.451974 0.892031i \(-0.649280\pi\)
−0.451974 + 0.892031i \(0.649280\pi\)
\(510\) 0 0
\(511\) 13.0371 0.576730
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.84664 −0.169503
\(516\) 0 0
\(517\) 17.5163 0.770367
\(518\) 0 0
\(519\) −35.2112 −1.54560
\(520\) 0 0
\(521\) −14.8697 −0.651455 −0.325728 0.945464i \(-0.605609\pi\)
−0.325728 + 0.945464i \(0.605609\pi\)
\(522\) 0 0
\(523\) −10.8992 −0.476587 −0.238294 0.971193i \(-0.576588\pi\)
−0.238294 + 0.971193i \(0.576588\pi\)
\(524\) 0 0
\(525\) 51.3561 2.24136
\(526\) 0 0
\(527\) 45.3415 1.97511
\(528\) 0 0
\(529\) −22.7785 −0.990368
\(530\) 0 0
\(531\) 54.7811 2.37730
\(532\) 0 0
\(533\) 1.42342 0.0616552
\(534\) 0 0
\(535\) 0.234533 0.0101397
\(536\) 0 0
\(537\) 23.0353 0.994048
\(538\) 0 0
\(539\) 5.79650 0.249673
\(540\) 0 0
\(541\) 11.9509 0.513810 0.256905 0.966437i \(-0.417297\pi\)
0.256905 + 0.966437i \(0.417297\pi\)
\(542\) 0 0
\(543\) −40.1380 −1.72249
\(544\) 0 0
\(545\) −3.95092 −0.169239
\(546\) 0 0
\(547\) −4.00611 −0.171289 −0.0856445 0.996326i \(-0.527295\pi\)
−0.0856445 + 0.996326i \(0.527295\pi\)
\(548\) 0 0
\(549\) −94.6570 −4.03986
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 29.2311 1.24303
\(554\) 0 0
\(555\) 7.26031 0.308183
\(556\) 0 0
\(557\) 10.7198 0.454214 0.227107 0.973870i \(-0.427073\pi\)
0.227107 + 0.973870i \(0.427073\pi\)
\(558\) 0 0
\(559\) −11.0525 −0.467472
\(560\) 0 0
\(561\) 32.1104 1.35570
\(562\) 0 0
\(563\) 7.18096 0.302641 0.151321 0.988485i \(-0.451647\pi\)
0.151321 + 0.988485i \(0.451647\pi\)
\(564\) 0 0
\(565\) 2.27512 0.0957150
\(566\) 0 0
\(567\) −84.1372 −3.53343
\(568\) 0 0
\(569\) 31.4328 1.31773 0.658865 0.752261i \(-0.271037\pi\)
0.658865 + 0.752261i \(0.271037\pi\)
\(570\) 0 0
\(571\) 8.08623 0.338398 0.169199 0.985582i \(-0.445882\pi\)
0.169199 + 0.985582i \(0.445882\pi\)
\(572\) 0 0
\(573\) 29.2311 1.22115
\(574\) 0 0
\(575\) −2.24914 −0.0937956
\(576\) 0 0
\(577\) 4.95779 0.206396 0.103198 0.994661i \(-0.467093\pi\)
0.103198 + 0.994661i \(0.467093\pi\)
\(578\) 0 0
\(579\) −10.2767 −0.427087
\(580\) 0 0
\(581\) −30.2491 −1.25495
\(582\) 0 0
\(583\) −6.94137 −0.287482
\(584\) 0 0
\(585\) −10.0913 −0.417223
\(586\) 0 0
\(587\) 23.7716 0.981158 0.490579 0.871397i \(-0.336785\pi\)
0.490579 + 0.871397i \(0.336785\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −69.0303 −2.83953
\(592\) 0 0
\(593\) −42.4036 −1.74131 −0.870653 0.491898i \(-0.836303\pi\)
−0.870653 + 0.491898i \(0.836303\pi\)
\(594\) 0 0
\(595\) −10.4622 −0.428908
\(596\) 0 0
\(597\) 32.1526 1.31592
\(598\) 0 0
\(599\) 42.8517 1.75087 0.875436 0.483333i \(-0.160574\pi\)
0.875436 + 0.483333i \(0.160574\pi\)
\(600\) 0 0
\(601\) −15.1855 −0.619427 −0.309714 0.950830i \(-0.600233\pi\)
−0.309714 + 0.950830i \(0.600233\pi\)
\(602\) 0 0
\(603\) −4.78801 −0.194983
\(604\) 0 0
\(605\) −4.15947 −0.169107
\(606\) 0 0
\(607\) −32.3336 −1.31238 −0.656189 0.754596i \(-0.727833\pi\)
−0.656189 + 0.754596i \(0.727833\pi\)
\(608\) 0 0
\(609\) −53.4036 −2.16402
\(610\) 0 0
\(611\) −33.7907 −1.36702
\(612\) 0 0
\(613\) −7.83365 −0.316398 −0.158199 0.987407i \(-0.550569\pi\)
−0.158199 + 0.987407i \(0.550569\pi\)
\(614\) 0 0
\(615\) −0.767287 −0.0309400
\(616\) 0 0
\(617\) −4.26719 −0.171790 −0.0858952 0.996304i \(-0.527375\pi\)
−0.0858952 + 0.996304i \(0.527375\pi\)
\(618\) 0 0
\(619\) 42.8363 1.72174 0.860869 0.508827i \(-0.169921\pi\)
0.860869 + 0.508827i \(0.169921\pi\)
\(620\) 0 0
\(621\) 6.96896 0.279655
\(622\) 0 0
\(623\) −9.77234 −0.391521
\(624\) 0 0
\(625\) 21.7259 0.869038
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 31.9018 1.27201
\(630\) 0 0
\(631\) −36.3104 −1.44550 −0.722748 0.691112i \(-0.757121\pi\)
−0.722748 + 0.691112i \(0.757121\pi\)
\(632\) 0 0
\(633\) 62.0613 2.46672
\(634\) 0 0
\(635\) −8.68373 −0.344603
\(636\) 0 0
\(637\) −11.1820 −0.443048
\(638\) 0 0
\(639\) −28.5535 −1.12956
\(640\) 0 0
\(641\) −49.6087 −1.95942 −0.979712 0.200409i \(-0.935773\pi\)
−0.979712 + 0.200409i \(0.935773\pi\)
\(642\) 0 0
\(643\) −4.98539 −0.196605 −0.0983023 0.995157i \(-0.531341\pi\)
−0.0983023 + 0.995157i \(0.531341\pi\)
\(644\) 0 0
\(645\) 5.95779 0.234588
\(646\) 0 0
\(647\) −43.2863 −1.70176 −0.850880 0.525360i \(-0.823931\pi\)
−0.850880 + 0.525360i \(0.823931\pi\)
\(648\) 0 0
\(649\) 10.6612 0.418488
\(650\) 0 0
\(651\) −72.5174 −2.84218
\(652\) 0 0
\(653\) −5.43965 −0.212870 −0.106435 0.994320i \(-0.533944\pi\)
−0.106435 + 0.994320i \(0.533944\pi\)
\(654\) 0 0
\(655\) 0.408612 0.0159658
\(656\) 0 0
\(657\) −29.7846 −1.16201
\(658\) 0 0
\(659\) −5.74924 −0.223959 −0.111979 0.993711i \(-0.535719\pi\)
−0.111979 + 0.993711i \(0.535719\pi\)
\(660\) 0 0
\(661\) −10.2553 −0.398883 −0.199442 0.979910i \(-0.563913\pi\)
−0.199442 + 0.979910i \(0.563913\pi\)
\(662\) 0 0
\(663\) −61.9440 −2.40571
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.33881 0.0905591
\(668\) 0 0
\(669\) −55.1346 −2.13162
\(670\) 0 0
\(671\) −18.4216 −0.711158
\(672\) 0 0
\(673\) −29.9379 −1.15402 −0.577011 0.816736i \(-0.695781\pi\)
−0.577011 + 0.816736i \(0.695781\pi\)
\(674\) 0 0
\(675\) −70.7501 −2.72317
\(676\) 0 0
\(677\) −11.8827 −0.456691 −0.228345 0.973580i \(-0.573332\pi\)
−0.228345 + 0.973580i \(0.573332\pi\)
\(678\) 0 0
\(679\) −0.193945 −0.00744293
\(680\) 0 0
\(681\) 2.10084 0.0805043
\(682\) 0 0
\(683\) 6.35180 0.243045 0.121522 0.992589i \(-0.461222\pi\)
0.121522 + 0.992589i \(0.461222\pi\)
\(684\) 0 0
\(685\) 2.14486 0.0819510
\(686\) 0 0
\(687\) −27.7914 −1.06031
\(688\) 0 0
\(689\) 13.3906 0.510140
\(690\) 0 0
\(691\) 28.9966 1.10308 0.551541 0.834148i \(-0.314040\pi\)
0.551541 + 0.834148i \(0.314040\pi\)
\(692\) 0 0
\(693\) −36.7620 −1.39647
\(694\) 0 0
\(695\) −7.67580 −0.291160
\(696\) 0 0
\(697\) −3.37146 −0.127703
\(698\) 0 0
\(699\) −12.0440 −0.455547
\(700\) 0 0
\(701\) 4.00162 0.151139 0.0755695 0.997141i \(-0.475923\pi\)
0.0755695 + 0.997141i \(0.475923\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 18.2147 0.686004
\(706\) 0 0
\(707\) −38.3189 −1.44113
\(708\) 0 0
\(709\) −16.4638 −0.618311 −0.309156 0.951011i \(-0.600046\pi\)
−0.309156 + 0.951011i \(0.600046\pi\)
\(710\) 0 0
\(711\) −66.7811 −2.50449
\(712\) 0 0
\(713\) 3.17590 0.118938
\(714\) 0 0
\(715\) −1.96391 −0.0734460
\(716\) 0 0
\(717\) 51.2242 1.91300
\(718\) 0 0
\(719\) 19.2112 0.716458 0.358229 0.933634i \(-0.383381\pi\)
0.358229 + 0.933634i \(0.383381\pi\)
\(720\) 0 0
\(721\) 27.0327 1.00675
\(722\) 0 0
\(723\) −52.3561 −1.94714
\(724\) 0 0
\(725\) −23.7440 −0.881829
\(726\) 0 0
\(727\) 18.1663 0.673753 0.336876 0.941549i \(-0.390630\pi\)
0.336876 + 0.941549i \(0.390630\pi\)
\(728\) 0 0
\(729\) 47.8984 1.77401
\(730\) 0 0
\(731\) 26.1786 0.968250
\(732\) 0 0
\(733\) 50.2423 1.85574 0.927870 0.372903i \(-0.121638\pi\)
0.927870 + 0.372903i \(0.121638\pi\)
\(734\) 0 0
\(735\) 6.02760 0.222331
\(736\) 0 0
\(737\) −0.931815 −0.0343238
\(738\) 0 0
\(739\) −29.7766 −1.09535 −0.547676 0.836691i \(-0.684487\pi\)
−0.547676 + 0.836691i \(0.684487\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 39.5156 1.44969 0.724843 0.688914i \(-0.241912\pi\)
0.724843 + 0.688914i \(0.241912\pi\)
\(744\) 0 0
\(745\) 9.84053 0.360529
\(746\) 0 0
\(747\) 69.1070 2.52849
\(748\) 0 0
\(749\) −1.64820 −0.0602240
\(750\) 0 0
\(751\) −18.1043 −0.660634 −0.330317 0.943870i \(-0.607156\pi\)
−0.330317 + 0.943870i \(0.607156\pi\)
\(752\) 0 0
\(753\) −50.8690 −1.85377
\(754\) 0 0
\(755\) 0.824101 0.0299921
\(756\) 0 0
\(757\) −23.5991 −0.857725 −0.428862 0.903370i \(-0.641085\pi\)
−0.428862 + 0.903370i \(0.641085\pi\)
\(758\) 0 0
\(759\) 2.24914 0.0816386
\(760\) 0 0
\(761\) −1.69061 −0.0612845 −0.0306422 0.999530i \(-0.509755\pi\)
−0.0306422 + 0.999530i \(0.509755\pi\)
\(762\) 0 0
\(763\) 27.7655 1.00518
\(764\) 0 0
\(765\) 23.9018 0.864173
\(766\) 0 0
\(767\) −20.5665 −0.742612
\(768\) 0 0
\(769\) −52.1165 −1.87937 −0.939685 0.342042i \(-0.888881\pi\)
−0.939685 + 0.342042i \(0.888881\pi\)
\(770\) 0 0
\(771\) −90.3821 −3.25503
\(772\) 0 0
\(773\) 45.0794 1.62139 0.810696 0.585468i \(-0.199089\pi\)
0.810696 + 0.585468i \(0.199089\pi\)
\(774\) 0 0
\(775\) −32.2423 −1.15818
\(776\) 0 0
\(777\) −51.0225 −1.83042
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −5.55691 −0.198842
\(782\) 0 0
\(783\) 73.5708 2.62920
\(784\) 0 0
\(785\) −0.0750608 −0.00267903
\(786\) 0 0
\(787\) −38.1414 −1.35960 −0.679798 0.733400i \(-0.737932\pi\)
−0.679798 + 0.733400i \(0.737932\pi\)
\(788\) 0 0
\(789\) 54.7535 1.94928
\(790\) 0 0
\(791\) −15.9886 −0.568490
\(792\) 0 0
\(793\) 35.5370 1.26196
\(794\) 0 0
\(795\) −7.21811 −0.256000
\(796\) 0 0
\(797\) −13.7148 −0.485802 −0.242901 0.970051i \(-0.578099\pi\)
−0.242901 + 0.970051i \(0.578099\pi\)
\(798\) 0 0
\(799\) 80.0353 2.83145
\(800\) 0 0
\(801\) 22.3258 0.788844
\(802\) 0 0
\(803\) −5.79650 −0.204554
\(804\) 0 0
\(805\) −0.732814 −0.0258283
\(806\) 0 0
\(807\) −96.2561 −3.38838
\(808\) 0 0
\(809\) −21.6285 −0.760419 −0.380209 0.924900i \(-0.624148\pi\)
−0.380209 + 0.924900i \(0.624148\pi\)
\(810\) 0 0
\(811\) −6.54049 −0.229668 −0.114834 0.993385i \(-0.536634\pi\)
−0.114834 + 0.993385i \(0.536634\pi\)
\(812\) 0 0
\(813\) 47.0173 1.64897
\(814\) 0 0
\(815\) −0.0405874 −0.00142172
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 70.9175 2.47806
\(820\) 0 0
\(821\) 41.6182 1.45249 0.726243 0.687438i \(-0.241265\pi\)
0.726243 + 0.687438i \(0.241265\pi\)
\(822\) 0 0
\(823\) −5.45264 −0.190067 −0.0950335 0.995474i \(-0.530296\pi\)
−0.0950335 + 0.995474i \(0.530296\pi\)
\(824\) 0 0
\(825\) −22.8337 −0.794966
\(826\) 0 0
\(827\) −2.68879 −0.0934983 −0.0467492 0.998907i \(-0.514886\pi\)
−0.0467492 + 0.998907i \(0.514886\pi\)
\(828\) 0 0
\(829\) −27.4328 −0.952780 −0.476390 0.879234i \(-0.658055\pi\)
−0.476390 + 0.879234i \(0.658055\pi\)
\(830\) 0 0
\(831\) −40.3595 −1.40006
\(832\) 0 0
\(833\) 26.4853 0.917661
\(834\) 0 0
\(835\) −2.95436 −0.102240
\(836\) 0 0
\(837\) 99.9027 3.45314
\(838\) 0 0
\(839\) −27.4413 −0.947378 −0.473689 0.880692i \(-0.657078\pi\)
−0.473689 + 0.880692i \(0.657078\pi\)
\(840\) 0 0
\(841\) −4.30939 −0.148600
\(842\) 0 0
\(843\) −33.4439 −1.15187
\(844\) 0 0
\(845\) −2.33032 −0.0801653
\(846\) 0 0
\(847\) 29.2311 1.00439
\(848\) 0 0
\(849\) −51.5466 −1.76907
\(850\) 0 0
\(851\) 2.23453 0.0765988
\(852\) 0 0
\(853\) 36.3871 1.24587 0.622936 0.782273i \(-0.285940\pi\)
0.622936 + 0.782273i \(0.285940\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −49.1295 −1.67823 −0.839116 0.543953i \(-0.816927\pi\)
−0.839116 + 0.543953i \(0.816927\pi\)
\(858\) 0 0
\(859\) 51.9130 1.77125 0.885624 0.464402i \(-0.153731\pi\)
0.885624 + 0.464402i \(0.153731\pi\)
\(860\) 0 0
\(861\) 5.39218 0.183765
\(862\) 0 0
\(863\) 27.9785 0.952400 0.476200 0.879337i \(-0.342014\pi\)
0.476200 + 0.879337i \(0.342014\pi\)
\(864\) 0 0
\(865\) −5.10084 −0.173434
\(866\) 0 0
\(867\) 91.4829 3.10692
\(868\) 0 0
\(869\) −12.9966 −0.440878
\(870\) 0 0
\(871\) 1.79756 0.0609080
\(872\) 0 0
\(873\) 0.443086 0.0149962
\(874\) 0 0
\(875\) 15.2242 0.514673
\(876\) 0 0
\(877\) −12.4017 −0.418777 −0.209388 0.977833i \(-0.567147\pi\)
−0.209388 + 0.977833i \(0.567147\pi\)
\(878\) 0 0
\(879\) −39.5026 −1.33239
\(880\) 0 0
\(881\) 17.8923 0.602806 0.301403 0.953497i \(-0.402545\pi\)
0.301403 + 0.953497i \(0.402545\pi\)
\(882\) 0 0
\(883\) −11.0337 −0.371314 −0.185657 0.982615i \(-0.559441\pi\)
−0.185657 + 0.982615i \(0.559441\pi\)
\(884\) 0 0
\(885\) 11.0862 0.372660
\(886\) 0 0
\(887\) −40.3940 −1.35630 −0.678149 0.734924i \(-0.737218\pi\)
−0.678149 + 0.734924i \(0.737218\pi\)
\(888\) 0 0
\(889\) 61.0258 2.04674
\(890\) 0 0
\(891\) 37.4086 1.25324
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 3.33699 0.111543
\(896\) 0 0
\(897\) −4.33881 −0.144869
\(898\) 0 0
\(899\) 33.5277 1.11821
\(900\) 0 0
\(901\) −31.7164 −1.05663
\(902\) 0 0
\(903\) −41.8690 −1.39331
\(904\) 0 0
\(905\) −5.81455 −0.193282
\(906\) 0 0
\(907\) −39.1510 −1.29999 −0.649993 0.759940i \(-0.725228\pi\)
−0.649993 + 0.759940i \(0.725228\pi\)
\(908\) 0 0
\(909\) 87.5432 2.90362
\(910\) 0 0
\(911\) −27.3561 −0.906348 −0.453174 0.891422i \(-0.649708\pi\)
−0.453174 + 0.891422i \(0.649708\pi\)
\(912\) 0 0
\(913\) 13.4492 0.445104
\(914\) 0 0
\(915\) −19.1560 −0.633279
\(916\) 0 0
\(917\) −2.87156 −0.0948274
\(918\) 0 0
\(919\) −0.948243 −0.0312796 −0.0156398 0.999878i \(-0.504979\pi\)
−0.0156398 + 0.999878i \(0.504979\pi\)
\(920\) 0 0
\(921\) −39.9673 −1.31697
\(922\) 0 0
\(923\) 10.7198 0.352847
\(924\) 0 0
\(925\) −22.6854 −0.745890
\(926\) 0 0
\(927\) −61.7586 −2.02842
\(928\) 0 0
\(929\) 5.26051 0.172592 0.0862959 0.996270i \(-0.472497\pi\)
0.0862959 + 0.996270i \(0.472497\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −1.68879 −0.0552885
\(934\) 0 0
\(935\) 4.65164 0.152125
\(936\) 0 0
\(937\) 45.9276 1.50039 0.750195 0.661217i \(-0.229960\pi\)
0.750195 + 0.661217i \(0.229960\pi\)
\(938\) 0 0
\(939\) 60.4734 1.97347
\(940\) 0 0
\(941\) −44.5957 −1.45378 −0.726889 0.686755i \(-0.759034\pi\)
−0.726889 + 0.686755i \(0.759034\pi\)
\(942\) 0 0
\(943\) −0.236151 −0.00769013
\(944\) 0 0
\(945\) −23.0518 −0.749874
\(946\) 0 0
\(947\) −14.0162 −0.455466 −0.227733 0.973724i \(-0.573131\pi\)
−0.227733 + 0.973724i \(0.573131\pi\)
\(948\) 0 0
\(949\) 11.1820 0.362984
\(950\) 0 0
\(951\) −9.21811 −0.298918
\(952\) 0 0
\(953\) 2.84664 0.0922118 0.0461059 0.998937i \(-0.485319\pi\)
0.0461059 + 0.998937i \(0.485319\pi\)
\(954\) 0 0
\(955\) 4.23453 0.137026
\(956\) 0 0
\(957\) 23.7440 0.767534
\(958\) 0 0
\(959\) −15.0732 −0.486740
\(960\) 0 0
\(961\) 14.5277 0.468635
\(962\) 0 0
\(963\) 3.76547 0.121340
\(964\) 0 0
\(965\) −1.48873 −0.0479239
\(966\) 0 0
\(967\) −1.66119 −0.0534203 −0.0267101 0.999643i \(-0.508503\pi\)
−0.0267101 + 0.999643i \(0.508503\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 40.4182 1.29708 0.648540 0.761180i \(-0.275380\pi\)
0.648540 + 0.761180i \(0.275380\pi\)
\(972\) 0 0
\(973\) 53.9424 1.72931
\(974\) 0 0
\(975\) 44.0483 1.41068
\(976\) 0 0
\(977\) 10.5439 0.337330 0.168665 0.985673i \(-0.446054\pi\)
0.168665 + 0.985673i \(0.446054\pi\)
\(978\) 0 0
\(979\) 4.34492 0.138864
\(980\) 0 0
\(981\) −63.4328 −2.02525
\(982\) 0 0
\(983\) −9.83365 −0.313645 −0.156822 0.987627i \(-0.550125\pi\)
−0.156822 + 0.987627i \(0.550125\pi\)
\(984\) 0 0
\(985\) −10.0000 −0.318626
\(986\) 0 0
\(987\) −128.005 −4.07446
\(988\) 0 0
\(989\) 1.83365 0.0583068
\(990\) 0 0
\(991\) 20.2699 0.643893 0.321947 0.946758i \(-0.395663\pi\)
0.321947 + 0.946758i \(0.395663\pi\)
\(992\) 0 0
\(993\) −61.8233 −1.96190
\(994\) 0 0
\(995\) 4.65775 0.147661
\(996\) 0 0
\(997\) 15.3208 0.485213 0.242607 0.970125i \(-0.421998\pi\)
0.242607 + 0.970125i \(0.421998\pi\)
\(998\) 0 0
\(999\) 70.2906 2.22390
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.r.1.3 3
4.3 odd 2 5776.2.a.bk.1.1 3
19.7 even 3 152.2.i.c.49.1 6
19.11 even 3 152.2.i.c.121.1 yes 6
19.18 odd 2 2888.2.a.n.1.1 3
57.11 odd 6 1368.2.s.k.577.2 6
57.26 odd 6 1368.2.s.k.505.2 6
76.7 odd 6 304.2.i.f.49.3 6
76.11 odd 6 304.2.i.f.273.3 6
76.75 even 2 5776.2.a.bq.1.3 3
152.11 odd 6 1216.2.i.m.577.1 6
152.45 even 6 1216.2.i.n.961.3 6
152.83 odd 6 1216.2.i.m.961.1 6
152.125 even 6 1216.2.i.n.577.3 6
228.11 even 6 2736.2.s.y.577.2 6
228.83 even 6 2736.2.s.y.1873.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.i.c.49.1 6 19.7 even 3
152.2.i.c.121.1 yes 6 19.11 even 3
304.2.i.f.49.3 6 76.7 odd 6
304.2.i.f.273.3 6 76.11 odd 6
1216.2.i.m.577.1 6 152.11 odd 6
1216.2.i.m.961.1 6 152.83 odd 6
1216.2.i.n.577.3 6 152.125 even 6
1216.2.i.n.961.3 6 152.45 even 6
1368.2.s.k.505.2 6 57.26 odd 6
1368.2.s.k.577.2 6 57.11 odd 6
2736.2.s.y.577.2 6 228.11 even 6
2736.2.s.y.1873.2 6 228.83 even 6
2888.2.a.n.1.1 3 19.18 odd 2
2888.2.a.r.1.3 3 1.1 even 1 trivial
5776.2.a.bk.1.1 3 4.3 odd 2
5776.2.a.bq.1.3 3 76.75 even 2