Properties

Label 2888.2.a.r.1.2
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,1,0,1,0,-2,0,6,0,4,0,-1,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.34292\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.146365 q^{3} +2.34292 q^{5} +3.83221 q^{7} -2.97858 q^{9} +3.34292 q^{11} +6.17513 q^{13} -0.342923 q^{15} +5.19656 q^{17} -0.560904 q^{21} +2.34292 q^{23} +0.489289 q^{25} +0.875057 q^{27} +0.0501921 q^{29} -3.43910 q^{31} -0.489289 q^{33} +8.97858 q^{35} -5.43910 q^{37} -0.903827 q^{39} -7.29273 q^{41} -8.86098 q^{43} -6.97858 q^{45} +10.7360 q^{47} +7.68585 q^{49} -0.760597 q^{51} -3.19656 q^{53} +7.83221 q^{55} +3.85363 q^{59} +2.92839 q^{61} -11.4145 q^{63} +14.4679 q^{65} -11.5181 q^{67} -0.342923 q^{69} +1.48929 q^{71} -7.68585 q^{73} -0.0716150 q^{75} +12.8108 q^{77} +0.175135 q^{79} +8.80765 q^{81} -7.00735 q^{83} +12.1751 q^{85} -0.00734639 q^{87} -13.5468 q^{89} +23.6644 q^{91} +0.503365 q^{93} -3.68585 q^{97} -9.95715 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} + q^{5} - 2 q^{7} + 6 q^{9} + 4 q^{11} - q^{13} + 5 q^{15} + 11 q^{17} - 6 q^{21} + q^{23} - 6 q^{25} + 19 q^{27} - 3 q^{29} - 6 q^{31} + 6 q^{33} + 12 q^{35} - 12 q^{37} - q^{39} - 19 q^{41}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.146365 −0.0845042 −0.0422521 0.999107i \(-0.513453\pi\)
−0.0422521 + 0.999107i \(0.513453\pi\)
\(4\) 0 0
\(5\) 2.34292 1.04779 0.523894 0.851784i \(-0.324479\pi\)
0.523894 + 0.851784i \(0.324479\pi\)
\(6\) 0 0
\(7\) 3.83221 1.44844 0.724220 0.689569i \(-0.242200\pi\)
0.724220 + 0.689569i \(0.242200\pi\)
\(8\) 0 0
\(9\) −2.97858 −0.992859
\(10\) 0 0
\(11\) 3.34292 1.00793 0.503965 0.863724i \(-0.331874\pi\)
0.503965 + 0.863724i \(0.331874\pi\)
\(12\) 0 0
\(13\) 6.17513 1.71267 0.856337 0.516417i \(-0.172735\pi\)
0.856337 + 0.516417i \(0.172735\pi\)
\(14\) 0 0
\(15\) −0.342923 −0.0885424
\(16\) 0 0
\(17\) 5.19656 1.26035 0.630175 0.776453i \(-0.282983\pi\)
0.630175 + 0.776453i \(0.282983\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) −0.560904 −0.122399
\(22\) 0 0
\(23\) 2.34292 0.488533 0.244267 0.969708i \(-0.421453\pi\)
0.244267 + 0.969708i \(0.421453\pi\)
\(24\) 0 0
\(25\) 0.489289 0.0978577
\(26\) 0 0
\(27\) 0.875057 0.168405
\(28\) 0 0
\(29\) 0.0501921 0.00932044 0.00466022 0.999989i \(-0.498517\pi\)
0.00466022 + 0.999989i \(0.498517\pi\)
\(30\) 0 0
\(31\) −3.43910 −0.617680 −0.308840 0.951114i \(-0.599941\pi\)
−0.308840 + 0.951114i \(0.599941\pi\)
\(32\) 0 0
\(33\) −0.489289 −0.0851742
\(34\) 0 0
\(35\) 8.97858 1.51766
\(36\) 0 0
\(37\) −5.43910 −0.894182 −0.447091 0.894488i \(-0.647540\pi\)
−0.447091 + 0.894488i \(0.647540\pi\)
\(38\) 0 0
\(39\) −0.903827 −0.144728
\(40\) 0 0
\(41\) −7.29273 −1.13893 −0.569467 0.822014i \(-0.692850\pi\)
−0.569467 + 0.822014i \(0.692850\pi\)
\(42\) 0 0
\(43\) −8.86098 −1.35129 −0.675643 0.737229i \(-0.736134\pi\)
−0.675643 + 0.737229i \(0.736134\pi\)
\(44\) 0 0
\(45\) −6.97858 −1.04030
\(46\) 0 0
\(47\) 10.7360 1.56601 0.783006 0.622014i \(-0.213685\pi\)
0.783006 + 0.622014i \(0.213685\pi\)
\(48\) 0 0
\(49\) 7.68585 1.09798
\(50\) 0 0
\(51\) −0.760597 −0.106505
\(52\) 0 0
\(53\) −3.19656 −0.439081 −0.219540 0.975603i \(-0.570456\pi\)
−0.219540 + 0.975603i \(0.570456\pi\)
\(54\) 0 0
\(55\) 7.83221 1.05610
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.85363 0.501700 0.250850 0.968026i \(-0.419290\pi\)
0.250850 + 0.968026i \(0.419290\pi\)
\(60\) 0 0
\(61\) 2.92839 0.374941 0.187471 0.982270i \(-0.439971\pi\)
0.187471 + 0.982270i \(0.439971\pi\)
\(62\) 0 0
\(63\) −11.4145 −1.43810
\(64\) 0 0
\(65\) 14.4679 1.79452
\(66\) 0 0
\(67\) −11.5181 −1.40715 −0.703577 0.710619i \(-0.748415\pi\)
−0.703577 + 0.710619i \(0.748415\pi\)
\(68\) 0 0
\(69\) −0.342923 −0.0412831
\(70\) 0 0
\(71\) 1.48929 0.176746 0.0883730 0.996087i \(-0.471833\pi\)
0.0883730 + 0.996087i \(0.471833\pi\)
\(72\) 0 0
\(73\) −7.68585 −0.899560 −0.449780 0.893139i \(-0.648498\pi\)
−0.449780 + 0.893139i \(0.648498\pi\)
\(74\) 0 0
\(75\) −0.0716150 −0.00826938
\(76\) 0 0
\(77\) 12.8108 1.45992
\(78\) 0 0
\(79\) 0.175135 0.0197042 0.00985210 0.999951i \(-0.496864\pi\)
0.00985210 + 0.999951i \(0.496864\pi\)
\(80\) 0 0
\(81\) 8.80765 0.978628
\(82\) 0 0
\(83\) −7.00735 −0.769156 −0.384578 0.923092i \(-0.625653\pi\)
−0.384578 + 0.923092i \(0.625653\pi\)
\(84\) 0 0
\(85\) 12.1751 1.32058
\(86\) 0 0
\(87\) −0.00734639 −0.000787616 0
\(88\) 0 0
\(89\) −13.5468 −1.43596 −0.717980 0.696063i \(-0.754933\pi\)
−0.717980 + 0.696063i \(0.754933\pi\)
\(90\) 0 0
\(91\) 23.6644 2.48071
\(92\) 0 0
\(93\) 0.503365 0.0521965
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −3.68585 −0.374241 −0.187120 0.982337i \(-0.559915\pi\)
−0.187120 + 0.982337i \(0.559915\pi\)
\(98\) 0 0
\(99\) −9.95715 −1.00073
\(100\) 0 0
\(101\) −7.61423 −0.757644 −0.378822 0.925469i \(-0.623671\pi\)
−0.378822 + 0.925469i \(0.623671\pi\)
\(102\) 0 0
\(103\) 16.6430 1.63988 0.819942 0.572447i \(-0.194006\pi\)
0.819942 + 0.572447i \(0.194006\pi\)
\(104\) 0 0
\(105\) −1.31415 −0.128248
\(106\) 0 0
\(107\) −6.29273 −0.608341 −0.304171 0.952618i \(-0.598379\pi\)
−0.304171 + 0.952618i \(0.598379\pi\)
\(108\) 0 0
\(109\) 11.1537 1.06833 0.534166 0.845380i \(-0.320626\pi\)
0.534166 + 0.845380i \(0.320626\pi\)
\(110\) 0 0
\(111\) 0.796096 0.0755621
\(112\) 0 0
\(113\) −17.7606 −1.67078 −0.835388 0.549660i \(-0.814757\pi\)
−0.835388 + 0.549660i \(0.814757\pi\)
\(114\) 0 0
\(115\) 5.48929 0.511879
\(116\) 0 0
\(117\) −18.3931 −1.70044
\(118\) 0 0
\(119\) 19.9143 1.82554
\(120\) 0 0
\(121\) 0.175135 0.0159213
\(122\) 0 0
\(123\) 1.06740 0.0962446
\(124\) 0 0
\(125\) −10.5682 −0.945253
\(126\) 0 0
\(127\) 18.4250 1.63496 0.817478 0.575960i \(-0.195371\pi\)
0.817478 + 0.575960i \(0.195371\pi\)
\(128\) 0 0
\(129\) 1.29694 0.114189
\(130\) 0 0
\(131\) −3.22533 −0.281798 −0.140899 0.990024i \(-0.544999\pi\)
−0.140899 + 0.990024i \(0.544999\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.05019 0.176452
\(136\) 0 0
\(137\) −5.97858 −0.510784 −0.255392 0.966838i \(-0.582205\pi\)
−0.255392 + 0.966838i \(0.582205\pi\)
\(138\) 0 0
\(139\) −9.16779 −0.777602 −0.388801 0.921322i \(-0.627111\pi\)
−0.388801 + 0.921322i \(0.627111\pi\)
\(140\) 0 0
\(141\) −1.57139 −0.132335
\(142\) 0 0
\(143\) 20.6430 1.72625
\(144\) 0 0
\(145\) 0.117596 0.00976584
\(146\) 0 0
\(147\) −1.12494 −0.0927837
\(148\) 0 0
\(149\) 6.15058 0.503875 0.251937 0.967744i \(-0.418932\pi\)
0.251937 + 0.967744i \(0.418932\pi\)
\(150\) 0 0
\(151\) 5.14637 0.418805 0.209403 0.977830i \(-0.432848\pi\)
0.209403 + 0.977830i \(0.432848\pi\)
\(152\) 0 0
\(153\) −15.4783 −1.25135
\(154\) 0 0
\(155\) −8.05754 −0.647197
\(156\) 0 0
\(157\) 4.41033 0.351982 0.175991 0.984392i \(-0.443687\pi\)
0.175991 + 0.984392i \(0.443687\pi\)
\(158\) 0 0
\(159\) 0.467866 0.0371042
\(160\) 0 0
\(161\) 8.97858 0.707611
\(162\) 0 0
\(163\) 12.3215 0.965094 0.482547 0.875870i \(-0.339712\pi\)
0.482547 + 0.875870i \(0.339712\pi\)
\(164\) 0 0
\(165\) −1.14637 −0.0892444
\(166\) 0 0
\(167\) 5.78202 0.447426 0.223713 0.974655i \(-0.428182\pi\)
0.223713 + 0.974655i \(0.428182\pi\)
\(168\) 0 0
\(169\) 25.1323 1.93325
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.82487 −0.138742 −0.0693710 0.997591i \(-0.522099\pi\)
−0.0693710 + 0.997591i \(0.522099\pi\)
\(174\) 0 0
\(175\) 1.87506 0.141741
\(176\) 0 0
\(177\) −0.564039 −0.0423958
\(178\) 0 0
\(179\) 8.26396 0.617678 0.308839 0.951114i \(-0.400060\pi\)
0.308839 + 0.951114i \(0.400060\pi\)
\(180\) 0 0
\(181\) −21.7146 −1.61403 −0.807017 0.590528i \(-0.798920\pi\)
−0.807017 + 0.590528i \(0.798920\pi\)
\(182\) 0 0
\(183\) −0.428615 −0.0316841
\(184\) 0 0
\(185\) −12.7434 −0.936912
\(186\) 0 0
\(187\) 17.3717 1.27034
\(188\) 0 0
\(189\) 3.35341 0.243924
\(190\) 0 0
\(191\) −4.58546 −0.331792 −0.165896 0.986143i \(-0.553052\pi\)
−0.165896 + 0.986143i \(0.553052\pi\)
\(192\) 0 0
\(193\) −12.1751 −0.876385 −0.438193 0.898881i \(-0.644381\pi\)
−0.438193 + 0.898881i \(0.644381\pi\)
\(194\) 0 0
\(195\) −2.11760 −0.151644
\(196\) 0 0
\(197\) −4.26817 −0.304095 −0.152047 0.988373i \(-0.548587\pi\)
−0.152047 + 0.988373i \(0.548587\pi\)
\(198\) 0 0
\(199\) −2.86098 −0.202810 −0.101405 0.994845i \(-0.532334\pi\)
−0.101405 + 0.994845i \(0.532334\pi\)
\(200\) 0 0
\(201\) 1.68585 0.118910
\(202\) 0 0
\(203\) 0.192347 0.0135001
\(204\) 0 0
\(205\) −17.0863 −1.19336
\(206\) 0 0
\(207\) −6.97858 −0.485045
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 18.2755 1.25814 0.629069 0.777349i \(-0.283436\pi\)
0.629069 + 0.777349i \(0.283436\pi\)
\(212\) 0 0
\(213\) −0.217980 −0.0149358
\(214\) 0 0
\(215\) −20.7606 −1.41586
\(216\) 0 0
\(217\) −13.1793 −0.894672
\(218\) 0 0
\(219\) 1.12494 0.0760166
\(220\) 0 0
\(221\) 32.0894 2.15857
\(222\) 0 0
\(223\) −12.0502 −0.806941 −0.403470 0.914993i \(-0.632196\pi\)
−0.403470 + 0.914993i \(0.632196\pi\)
\(224\) 0 0
\(225\) −1.45738 −0.0971589
\(226\) 0 0
\(227\) −8.71462 −0.578409 −0.289205 0.957267i \(-0.593391\pi\)
−0.289205 + 0.957267i \(0.593391\pi\)
\(228\) 0 0
\(229\) 15.5640 1.02850 0.514250 0.857640i \(-0.328070\pi\)
0.514250 + 0.857640i \(0.328070\pi\)
\(230\) 0 0
\(231\) −1.87506 −0.123370
\(232\) 0 0
\(233\) −22.4292 −1.46939 −0.734694 0.678399i \(-0.762674\pi\)
−0.734694 + 0.678399i \(0.762674\pi\)
\(234\) 0 0
\(235\) 25.1537 1.64085
\(236\) 0 0
\(237\) −0.0256337 −0.00166509
\(238\) 0 0
\(239\) 30.7434 1.98862 0.994312 0.106505i \(-0.0339662\pi\)
0.994312 + 0.106505i \(0.0339662\pi\)
\(240\) 0 0
\(241\) 4.95715 0.319318 0.159659 0.987172i \(-0.448960\pi\)
0.159659 + 0.987172i \(0.448960\pi\)
\(242\) 0 0
\(243\) −3.91431 −0.251103
\(244\) 0 0
\(245\) 18.0073 1.15045
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 1.02563 0.0649969
\(250\) 0 0
\(251\) 27.5328 1.73785 0.868926 0.494942i \(-0.164811\pi\)
0.868926 + 0.494942i \(0.164811\pi\)
\(252\) 0 0
\(253\) 7.83221 0.492407
\(254\) 0 0
\(255\) −1.78202 −0.111594
\(256\) 0 0
\(257\) −11.8866 −0.741467 −0.370733 0.928739i \(-0.620894\pi\)
−0.370733 + 0.928739i \(0.620894\pi\)
\(258\) 0 0
\(259\) −20.8438 −1.29517
\(260\) 0 0
\(261\) −0.149501 −0.00925388
\(262\) 0 0
\(263\) 19.4219 1.19760 0.598802 0.800897i \(-0.295643\pi\)
0.598802 + 0.800897i \(0.295643\pi\)
\(264\) 0 0
\(265\) −7.48929 −0.460063
\(266\) 0 0
\(267\) 1.98279 0.121345
\(268\) 0 0
\(269\) 18.4826 1.12690 0.563451 0.826150i \(-0.309473\pi\)
0.563451 + 0.826150i \(0.309473\pi\)
\(270\) 0 0
\(271\) 16.3429 0.992762 0.496381 0.868105i \(-0.334662\pi\)
0.496381 + 0.868105i \(0.334662\pi\)
\(272\) 0 0
\(273\) −3.46365 −0.209630
\(274\) 0 0
\(275\) 1.63565 0.0986337
\(276\) 0 0
\(277\) 15.7894 0.948691 0.474346 0.880339i \(-0.342685\pi\)
0.474346 + 0.880339i \(0.342685\pi\)
\(278\) 0 0
\(279\) 10.2436 0.613269
\(280\) 0 0
\(281\) 8.42923 0.502846 0.251423 0.967877i \(-0.419102\pi\)
0.251423 + 0.967877i \(0.419102\pi\)
\(282\) 0 0
\(283\) 1.81079 0.107640 0.0538201 0.998551i \(-0.482860\pi\)
0.0538201 + 0.998551i \(0.482860\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −27.9473 −1.64968
\(288\) 0 0
\(289\) 10.0042 0.588483
\(290\) 0 0
\(291\) 0.539481 0.0316249
\(292\) 0 0
\(293\) 24.2400 1.41612 0.708059 0.706154i \(-0.249571\pi\)
0.708059 + 0.706154i \(0.249571\pi\)
\(294\) 0 0
\(295\) 9.02877 0.525675
\(296\) 0 0
\(297\) 2.92525 0.169740
\(298\) 0 0
\(299\) 14.4679 0.836698
\(300\) 0 0
\(301\) −33.9572 −1.95726
\(302\) 0 0
\(303\) 1.11446 0.0640241
\(304\) 0 0
\(305\) 6.86098 0.392859
\(306\) 0 0
\(307\) 22.0031 1.25579 0.627893 0.778300i \(-0.283918\pi\)
0.627893 + 0.778300i \(0.283918\pi\)
\(308\) 0 0
\(309\) −2.43596 −0.138577
\(310\) 0 0
\(311\) −32.4752 −1.84150 −0.920750 0.390153i \(-0.872422\pi\)
−0.920750 + 0.390153i \(0.872422\pi\)
\(312\) 0 0
\(313\) −9.24989 −0.522834 −0.261417 0.965226i \(-0.584190\pi\)
−0.261417 + 0.965226i \(0.584190\pi\)
\(314\) 0 0
\(315\) −26.7434 −1.50682
\(316\) 0 0
\(317\) 6.17513 0.346830 0.173415 0.984849i \(-0.444520\pi\)
0.173415 + 0.984849i \(0.444520\pi\)
\(318\) 0 0
\(319\) 0.167788 0.00939434
\(320\) 0 0
\(321\) 0.921039 0.0514074
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 3.02142 0.167598
\(326\) 0 0
\(327\) −1.63252 −0.0902785
\(328\) 0 0
\(329\) 41.1428 2.26827
\(330\) 0 0
\(331\) −10.3643 −0.569676 −0.284838 0.958576i \(-0.591940\pi\)
−0.284838 + 0.958576i \(0.591940\pi\)
\(332\) 0 0
\(333\) 16.2008 0.887797
\(334\) 0 0
\(335\) −26.9859 −1.47440
\(336\) 0 0
\(337\) 20.6216 1.12333 0.561664 0.827365i \(-0.310161\pi\)
0.561664 + 0.827365i \(0.310161\pi\)
\(338\) 0 0
\(339\) 2.59954 0.141188
\(340\) 0 0
\(341\) −11.4966 −0.622578
\(342\) 0 0
\(343\) 2.62831 0.141915
\(344\) 0 0
\(345\) −0.803442 −0.0432559
\(346\) 0 0
\(347\) −27.8108 −1.49296 −0.746481 0.665407i \(-0.768258\pi\)
−0.746481 + 0.665407i \(0.768258\pi\)
\(348\) 0 0
\(349\) 5.60688 0.300130 0.150065 0.988676i \(-0.452052\pi\)
0.150065 + 0.988676i \(0.452052\pi\)
\(350\) 0 0
\(351\) 5.40360 0.288423
\(352\) 0 0
\(353\) −30.0105 −1.59730 −0.798648 0.601798i \(-0.794451\pi\)
−0.798648 + 0.601798i \(0.794451\pi\)
\(354\) 0 0
\(355\) 3.48929 0.185192
\(356\) 0 0
\(357\) −2.91477 −0.154266
\(358\) 0 0
\(359\) −8.97123 −0.473483 −0.236742 0.971573i \(-0.576080\pi\)
−0.236742 + 0.971573i \(0.576080\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −0.0256337 −0.00134542
\(364\) 0 0
\(365\) −18.0073 −0.942548
\(366\) 0 0
\(367\) −10.4924 −0.547700 −0.273850 0.961772i \(-0.588297\pi\)
−0.273850 + 0.961772i \(0.588297\pi\)
\(368\) 0 0
\(369\) 21.7220 1.13080
\(370\) 0 0
\(371\) −12.2499 −0.635982
\(372\) 0 0
\(373\) −18.3074 −0.947922 −0.473961 0.880546i \(-0.657176\pi\)
−0.473961 + 0.880546i \(0.657176\pi\)
\(374\) 0 0
\(375\) 1.54683 0.0798778
\(376\) 0 0
\(377\) 0.309943 0.0159629
\(378\) 0 0
\(379\) 24.8438 1.27614 0.638069 0.769979i \(-0.279733\pi\)
0.638069 + 0.769979i \(0.279733\pi\)
\(380\) 0 0
\(381\) −2.69679 −0.138161
\(382\) 0 0
\(383\) 3.17200 0.162082 0.0810408 0.996711i \(-0.474176\pi\)
0.0810408 + 0.996711i \(0.474176\pi\)
\(384\) 0 0
\(385\) 30.0147 1.52969
\(386\) 0 0
\(387\) 26.3931 1.34164
\(388\) 0 0
\(389\) −11.3889 −0.577440 −0.288720 0.957414i \(-0.593230\pi\)
−0.288720 + 0.957414i \(0.593230\pi\)
\(390\) 0 0
\(391\) 12.1751 0.615723
\(392\) 0 0
\(393\) 0.472077 0.0238131
\(394\) 0 0
\(395\) 0.410327 0.0206458
\(396\) 0 0
\(397\) −18.8855 −0.947838 −0.473919 0.880568i \(-0.657161\pi\)
−0.473919 + 0.880568i \(0.657161\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −20.0214 −0.999822 −0.499911 0.866077i \(-0.666634\pi\)
−0.499911 + 0.866077i \(0.666634\pi\)
\(402\) 0 0
\(403\) −21.2369 −1.05788
\(404\) 0 0
\(405\) 20.6357 1.02539
\(406\) 0 0
\(407\) −18.1825 −0.901272
\(408\) 0 0
\(409\) 10.9143 0.539678 0.269839 0.962905i \(-0.413030\pi\)
0.269839 + 0.962905i \(0.413030\pi\)
\(410\) 0 0
\(411\) 0.875057 0.0431634
\(412\) 0 0
\(413\) 14.7679 0.726683
\(414\) 0 0
\(415\) −16.4177 −0.805912
\(416\) 0 0
\(417\) 1.34185 0.0657106
\(418\) 0 0
\(419\) −15.4145 −0.753049 −0.376525 0.926407i \(-0.622881\pi\)
−0.376525 + 0.926407i \(0.622881\pi\)
\(420\) 0 0
\(421\) −5.96450 −0.290692 −0.145346 0.989381i \(-0.546430\pi\)
−0.145346 + 0.989381i \(0.546430\pi\)
\(422\) 0 0
\(423\) −31.9781 −1.55483
\(424\) 0 0
\(425\) 2.54262 0.123335
\(426\) 0 0
\(427\) 11.2222 0.543080
\(428\) 0 0
\(429\) −3.02142 −0.145876
\(430\) 0 0
\(431\) −29.0189 −1.39779 −0.698896 0.715224i \(-0.746325\pi\)
−0.698896 + 0.715224i \(0.746325\pi\)
\(432\) 0 0
\(433\) −18.3822 −0.883391 −0.441695 0.897165i \(-0.645623\pi\)
−0.441695 + 0.897165i \(0.645623\pi\)
\(434\) 0 0
\(435\) −0.0172120 −0.000825254 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 7.61423 0.363407 0.181704 0.983353i \(-0.441839\pi\)
0.181704 + 0.983353i \(0.441839\pi\)
\(440\) 0 0
\(441\) −22.8929 −1.09014
\(442\) 0 0
\(443\) 7.50337 0.356496 0.178248 0.983986i \(-0.442957\pi\)
0.178248 + 0.983986i \(0.442957\pi\)
\(444\) 0 0
\(445\) −31.7392 −1.50458
\(446\) 0 0
\(447\) −0.900232 −0.0425795
\(448\) 0 0
\(449\) 9.31836 0.439761 0.219880 0.975527i \(-0.429433\pi\)
0.219880 + 0.975527i \(0.429433\pi\)
\(450\) 0 0
\(451\) −24.3790 −1.14796
\(452\) 0 0
\(453\) −0.753250 −0.0353908
\(454\) 0 0
\(455\) 55.4439 2.59925
\(456\) 0 0
\(457\) 22.4893 1.05200 0.526002 0.850483i \(-0.323690\pi\)
0.526002 + 0.850483i \(0.323690\pi\)
\(458\) 0 0
\(459\) 4.54729 0.212249
\(460\) 0 0
\(461\) 3.34606 0.155841 0.0779207 0.996960i \(-0.475172\pi\)
0.0779207 + 0.996960i \(0.475172\pi\)
\(462\) 0 0
\(463\) −26.0147 −1.20901 −0.604503 0.796603i \(-0.706628\pi\)
−0.604503 + 0.796603i \(0.706628\pi\)
\(464\) 0 0
\(465\) 1.17935 0.0546908
\(466\) 0 0
\(467\) −11.3429 −0.524888 −0.262444 0.964947i \(-0.584528\pi\)
−0.262444 + 0.964947i \(0.584528\pi\)
\(468\) 0 0
\(469\) −44.1396 −2.03818
\(470\) 0 0
\(471\) −0.645520 −0.0297440
\(472\) 0 0
\(473\) −29.6216 −1.36200
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 9.52119 0.435945
\(478\) 0 0
\(479\) −11.5040 −0.525630 −0.262815 0.964846i \(-0.584651\pi\)
−0.262815 + 0.964846i \(0.584651\pi\)
\(480\) 0 0
\(481\) −33.5872 −1.53144
\(482\) 0 0
\(483\) −1.31415 −0.0597961
\(484\) 0 0
\(485\) −8.63565 −0.392125
\(486\) 0 0
\(487\) 22.3832 1.01428 0.507141 0.861863i \(-0.330702\pi\)
0.507141 + 0.861863i \(0.330702\pi\)
\(488\) 0 0
\(489\) −1.80344 −0.0815545
\(490\) 0 0
\(491\) −22.0319 −0.994286 −0.497143 0.867669i \(-0.665618\pi\)
−0.497143 + 0.867669i \(0.665618\pi\)
\(492\) 0 0
\(493\) 0.260826 0.0117470
\(494\) 0 0
\(495\) −23.3288 −1.04855
\(496\) 0 0
\(497\) 5.70727 0.256006
\(498\) 0 0
\(499\) −1.21063 −0.0541954 −0.0270977 0.999633i \(-0.508627\pi\)
−0.0270977 + 0.999633i \(0.508627\pi\)
\(500\) 0 0
\(501\) −0.846288 −0.0378094
\(502\) 0 0
\(503\) −30.4924 −1.35959 −0.679795 0.733402i \(-0.737931\pi\)
−0.679795 + 0.733402i \(0.737931\pi\)
\(504\) 0 0
\(505\) −17.8396 −0.793850
\(506\) 0 0
\(507\) −3.67850 −0.163368
\(508\) 0 0
\(509\) −0.846288 −0.0375111 −0.0187555 0.999824i \(-0.505970\pi\)
−0.0187555 + 0.999824i \(0.505970\pi\)
\(510\) 0 0
\(511\) −29.4538 −1.30296
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 38.9933 1.71825
\(516\) 0 0
\(517\) 35.8898 1.57843
\(518\) 0 0
\(519\) 0.267097 0.0117243
\(520\) 0 0
\(521\) −42.6044 −1.86653 −0.933266 0.359187i \(-0.883054\pi\)
−0.933266 + 0.359187i \(0.883054\pi\)
\(522\) 0 0
\(523\) −11.7245 −0.512676 −0.256338 0.966587i \(-0.582516\pi\)
−0.256338 + 0.966587i \(0.582516\pi\)
\(524\) 0 0
\(525\) −0.274444 −0.0119777
\(526\) 0 0
\(527\) −17.8715 −0.778493
\(528\) 0 0
\(529\) −17.5107 −0.761335
\(530\) 0 0
\(531\) −11.4783 −0.498118
\(532\) 0 0
\(533\) −45.0336 −1.95062
\(534\) 0 0
\(535\) −14.7434 −0.637412
\(536\) 0 0
\(537\) −1.20956 −0.0521963
\(538\) 0 0
\(539\) 25.6932 1.10668
\(540\) 0 0
\(541\) −18.1323 −0.779568 −0.389784 0.920906i \(-0.627450\pi\)
−0.389784 + 0.920906i \(0.627450\pi\)
\(542\) 0 0
\(543\) 3.17827 0.136393
\(544\) 0 0
\(545\) 26.1323 1.11938
\(546\) 0 0
\(547\) 43.4036 1.85580 0.927902 0.372824i \(-0.121611\pi\)
0.927902 + 0.372824i \(0.121611\pi\)
\(548\) 0 0
\(549\) −8.72242 −0.372264
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.671153 0.0285403
\(554\) 0 0
\(555\) 1.86519 0.0791730
\(556\) 0 0
\(557\) 9.19656 0.389671 0.194835 0.980836i \(-0.437583\pi\)
0.194835 + 0.980836i \(0.437583\pi\)
\(558\) 0 0
\(559\) −54.7178 −2.31431
\(560\) 0 0
\(561\) −2.54262 −0.107349
\(562\) 0 0
\(563\) 41.3576 1.74302 0.871508 0.490382i \(-0.163143\pi\)
0.871508 + 0.490382i \(0.163143\pi\)
\(564\) 0 0
\(565\) −41.6117 −1.75062
\(566\) 0 0
\(567\) 33.7528 1.41748
\(568\) 0 0
\(569\) 1.22219 0.0512369 0.0256185 0.999672i \(-0.491844\pi\)
0.0256185 + 0.999672i \(0.491844\pi\)
\(570\) 0 0
\(571\) −4.32150 −0.180849 −0.0904246 0.995903i \(-0.528822\pi\)
−0.0904246 + 0.995903i \(0.528822\pi\)
\(572\) 0 0
\(573\) 0.671153 0.0280378
\(574\) 0 0
\(575\) 1.14637 0.0478067
\(576\) 0 0
\(577\) 2.03863 0.0848695 0.0424347 0.999099i \(-0.486489\pi\)
0.0424347 + 0.999099i \(0.486489\pi\)
\(578\) 0 0
\(579\) 1.78202 0.0740582
\(580\) 0 0
\(581\) −26.8536 −1.11408
\(582\) 0 0
\(583\) −10.6858 −0.442563
\(584\) 0 0
\(585\) −43.0937 −1.78170
\(586\) 0 0
\(587\) −8.66021 −0.357445 −0.178723 0.983900i \(-0.557196\pi\)
−0.178723 + 0.983900i \(0.557196\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0.624713 0.0256973
\(592\) 0 0
\(593\) 10.9718 0.450560 0.225280 0.974294i \(-0.427670\pi\)
0.225280 + 0.974294i \(0.427670\pi\)
\(594\) 0 0
\(595\) 46.6577 1.91278
\(596\) 0 0
\(597\) 0.418749 0.0171383
\(598\) 0 0
\(599\) 45.4219 1.85589 0.927944 0.372720i \(-0.121575\pi\)
0.927944 + 0.372720i \(0.121575\pi\)
\(600\) 0 0
\(601\) 29.8757 1.21865 0.609327 0.792919i \(-0.291440\pi\)
0.609327 + 0.792919i \(0.291440\pi\)
\(602\) 0 0
\(603\) 34.3074 1.39711
\(604\) 0 0
\(605\) 0.410327 0.0166822
\(606\) 0 0
\(607\) −34.7764 −1.41153 −0.705765 0.708446i \(-0.749396\pi\)
−0.705765 + 0.708446i \(0.749396\pi\)
\(608\) 0 0
\(609\) −0.0281529 −0.00114081
\(610\) 0 0
\(611\) 66.2965 2.68207
\(612\) 0 0
\(613\) 14.7606 0.596175 0.298087 0.954539i \(-0.403651\pi\)
0.298087 + 0.954539i \(0.403651\pi\)
\(614\) 0 0
\(615\) 2.50085 0.100844
\(616\) 0 0
\(617\) −26.0361 −1.04817 −0.524087 0.851665i \(-0.675593\pi\)
−0.524087 + 0.851665i \(0.675593\pi\)
\(618\) 0 0
\(619\) −40.7497 −1.63787 −0.818933 0.573888i \(-0.805434\pi\)
−0.818933 + 0.573888i \(0.805434\pi\)
\(620\) 0 0
\(621\) 2.05019 0.0822714
\(622\) 0 0
\(623\) −51.9143 −2.07990
\(624\) 0 0
\(625\) −27.2070 −1.08828
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −28.2646 −1.12698
\(630\) 0 0
\(631\) 31.8213 1.26678 0.633392 0.773831i \(-0.281662\pi\)
0.633392 + 0.773831i \(0.281662\pi\)
\(632\) 0 0
\(633\) −2.67491 −0.106318
\(634\) 0 0
\(635\) 43.1684 1.71309
\(636\) 0 0
\(637\) 47.4611 1.88048
\(638\) 0 0
\(639\) −4.43596 −0.175484
\(640\) 0 0
\(641\) −8.16465 −0.322484 −0.161242 0.986915i \(-0.551550\pi\)
−0.161242 + 0.986915i \(0.551550\pi\)
\(642\) 0 0
\(643\) 6.59702 0.260161 0.130081 0.991503i \(-0.458476\pi\)
0.130081 + 0.991503i \(0.458476\pi\)
\(644\) 0 0
\(645\) 3.03863 0.119646
\(646\) 0 0
\(647\) 2.60015 0.102223 0.0511113 0.998693i \(-0.483724\pi\)
0.0511113 + 0.998693i \(0.483724\pi\)
\(648\) 0 0
\(649\) 12.8824 0.505679
\(650\) 0 0
\(651\) 1.92900 0.0756035
\(652\) 0 0
\(653\) −2.39312 −0.0936498 −0.0468249 0.998903i \(-0.514910\pi\)
−0.0468249 + 0.998903i \(0.514910\pi\)
\(654\) 0 0
\(655\) −7.55669 −0.295264
\(656\) 0 0
\(657\) 22.8929 0.893137
\(658\) 0 0
\(659\) 22.6833 0.883617 0.441808 0.897109i \(-0.354337\pi\)
0.441808 + 0.897109i \(0.354337\pi\)
\(660\) 0 0
\(661\) 40.5500 1.57721 0.788605 0.614900i \(-0.210803\pi\)
0.788605 + 0.614900i \(0.210803\pi\)
\(662\) 0 0
\(663\) −4.69679 −0.182408
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.117596 0.00455334
\(668\) 0 0
\(669\) 1.76373 0.0681898
\(670\) 0 0
\(671\) 9.78937 0.377914
\(672\) 0 0
\(673\) −20.1004 −0.774813 −0.387406 0.921909i \(-0.626629\pi\)
−0.387406 + 0.921909i \(0.626629\pi\)
\(674\) 0 0
\(675\) 0.428156 0.0164797
\(676\) 0 0
\(677\) −19.3717 −0.744515 −0.372257 0.928130i \(-0.621416\pi\)
−0.372257 + 0.928130i \(0.621416\pi\)
\(678\) 0 0
\(679\) −14.1249 −0.542066
\(680\) 0 0
\(681\) 1.27552 0.0488780
\(682\) 0 0
\(683\) −16.1151 −0.616626 −0.308313 0.951285i \(-0.599764\pi\)
−0.308313 + 0.951285i \(0.599764\pi\)
\(684\) 0 0
\(685\) −14.0073 −0.535193
\(686\) 0 0
\(687\) −2.27804 −0.0869126
\(688\) 0 0
\(689\) −19.7392 −0.752003
\(690\) 0 0
\(691\) 15.4145 0.586397 0.293198 0.956052i \(-0.405280\pi\)
0.293198 + 0.956052i \(0.405280\pi\)
\(692\) 0 0
\(693\) −38.1579 −1.44950
\(694\) 0 0
\(695\) −21.4794 −0.814761
\(696\) 0 0
\(697\) −37.8971 −1.43545
\(698\) 0 0
\(699\) 3.28287 0.124169
\(700\) 0 0
\(701\) 35.8297 1.35327 0.676634 0.736319i \(-0.263438\pi\)
0.676634 + 0.736319i \(0.263438\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −3.68164 −0.138658
\(706\) 0 0
\(707\) −29.1793 −1.09740
\(708\) 0 0
\(709\) 8.82800 0.331543 0.165771 0.986164i \(-0.446989\pi\)
0.165771 + 0.986164i \(0.446989\pi\)
\(710\) 0 0
\(711\) −0.521652 −0.0195635
\(712\) 0 0
\(713\) −8.05754 −0.301757
\(714\) 0 0
\(715\) 48.3650 1.80875
\(716\) 0 0
\(717\) −4.49977 −0.168047
\(718\) 0 0
\(719\) −16.2671 −0.606660 −0.303330 0.952886i \(-0.598099\pi\)
−0.303330 + 0.952886i \(0.598099\pi\)
\(720\) 0 0
\(721\) 63.7795 2.37527
\(722\) 0 0
\(723\) −0.725556 −0.0269837
\(724\) 0 0
\(725\) 0.0245584 0.000912077 0
\(726\) 0 0
\(727\) 40.7606 1.51173 0.755863 0.654729i \(-0.227217\pi\)
0.755863 + 0.654729i \(0.227217\pi\)
\(728\) 0 0
\(729\) −25.8500 −0.957409
\(730\) 0 0
\(731\) −46.0466 −1.70309
\(732\) 0 0
\(733\) 19.6827 0.726998 0.363499 0.931595i \(-0.381582\pi\)
0.363499 + 0.931595i \(0.381582\pi\)
\(734\) 0 0
\(735\) −2.63565 −0.0972176
\(736\) 0 0
\(737\) −38.5040 −1.41831
\(738\) 0 0
\(739\) −42.7549 −1.57277 −0.786383 0.617739i \(-0.788049\pi\)
−0.786383 + 0.617739i \(0.788049\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −16.6848 −0.612105 −0.306052 0.952015i \(-0.599008\pi\)
−0.306052 + 0.952015i \(0.599008\pi\)
\(744\) 0 0
\(745\) 14.4103 0.527954
\(746\) 0 0
\(747\) 20.8719 0.763664
\(748\) 0 0
\(749\) −24.1151 −0.881146
\(750\) 0 0
\(751\) −30.8610 −1.12613 −0.563067 0.826412i \(-0.690379\pi\)
−0.563067 + 0.826412i \(0.690379\pi\)
\(752\) 0 0
\(753\) −4.02984 −0.146856
\(754\) 0 0
\(755\) 12.0575 0.438819
\(756\) 0 0
\(757\) −15.9828 −0.580904 −0.290452 0.956890i \(-0.593806\pi\)
−0.290452 + 0.956890i \(0.593806\pi\)
\(758\) 0 0
\(759\) −1.14637 −0.0416104
\(760\) 0 0
\(761\) 22.9975 0.833658 0.416829 0.908985i \(-0.363141\pi\)
0.416829 + 0.908985i \(0.363141\pi\)
\(762\) 0 0
\(763\) 42.7434 1.54741
\(764\) 0 0
\(765\) −36.2646 −1.31115
\(766\) 0 0
\(767\) 23.7967 0.859249
\(768\) 0 0
\(769\) 29.9462 1.07989 0.539944 0.841701i \(-0.318445\pi\)
0.539944 + 0.841701i \(0.318445\pi\)
\(770\) 0 0
\(771\) 1.73979 0.0626570
\(772\) 0 0
\(773\) 5.50758 0.198094 0.0990469 0.995083i \(-0.468421\pi\)
0.0990469 + 0.995083i \(0.468421\pi\)
\(774\) 0 0
\(775\) −1.68271 −0.0604447
\(776\) 0 0
\(777\) 3.05081 0.109447
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 4.97858 0.178147
\(782\) 0 0
\(783\) 0.0439210 0.00156961
\(784\) 0 0
\(785\) 10.3331 0.368803
\(786\) 0 0
\(787\) −8.40719 −0.299684 −0.149842 0.988710i \(-0.547877\pi\)
−0.149842 + 0.988710i \(0.547877\pi\)
\(788\) 0 0
\(789\) −2.84269 −0.101203
\(790\) 0 0
\(791\) −68.0624 −2.42002
\(792\) 0 0
\(793\) 18.0832 0.642152
\(794\) 0 0
\(795\) 1.09617 0.0388773
\(796\) 0 0
\(797\) 33.2186 1.17666 0.588332 0.808620i \(-0.299785\pi\)
0.588332 + 0.808620i \(0.299785\pi\)
\(798\) 0 0
\(799\) 55.7904 1.97372
\(800\) 0 0
\(801\) 40.3503 1.42571
\(802\) 0 0
\(803\) −25.6932 −0.906693
\(804\) 0 0
\(805\) 21.0361 0.741426
\(806\) 0 0
\(807\) −2.70521 −0.0952279
\(808\) 0 0
\(809\) 12.8971 0.453438 0.226719 0.973960i \(-0.427200\pi\)
0.226719 + 0.973960i \(0.427200\pi\)
\(810\) 0 0
\(811\) −2.66863 −0.0937084 −0.0468542 0.998902i \(-0.514920\pi\)
−0.0468542 + 0.998902i \(0.514920\pi\)
\(812\) 0 0
\(813\) −2.39204 −0.0838925
\(814\) 0 0
\(815\) 28.8683 1.01121
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −70.4863 −2.46299
\(820\) 0 0
\(821\) −33.6535 −1.17451 −0.587257 0.809400i \(-0.699792\pi\)
−0.587257 + 0.809400i \(0.699792\pi\)
\(822\) 0 0
\(823\) 17.8396 0.621848 0.310924 0.950435i \(-0.399362\pi\)
0.310924 + 0.950435i \(0.399362\pi\)
\(824\) 0 0
\(825\) −0.239403 −0.00833495
\(826\) 0 0
\(827\) 3.75325 0.130513 0.0652567 0.997869i \(-0.479213\pi\)
0.0652567 + 0.997869i \(0.479213\pi\)
\(828\) 0 0
\(829\) 2.77781 0.0964773 0.0482386 0.998836i \(-0.484639\pi\)
0.0482386 + 0.998836i \(0.484639\pi\)
\(830\) 0 0
\(831\) −2.31102 −0.0801683
\(832\) 0 0
\(833\) 39.9399 1.38384
\(834\) 0 0
\(835\) 13.5468 0.468807
\(836\) 0 0
\(837\) −3.00941 −0.104020
\(838\) 0 0
\(839\) −56.2228 −1.94103 −0.970513 0.241047i \(-0.922509\pi\)
−0.970513 + 0.241047i \(0.922509\pi\)
\(840\) 0 0
\(841\) −28.9975 −0.999913
\(842\) 0 0
\(843\) −1.23375 −0.0424926
\(844\) 0 0
\(845\) 58.8830 2.02564
\(846\) 0 0
\(847\) 0.671153 0.0230611
\(848\) 0 0
\(849\) −0.265037 −0.00909605
\(850\) 0 0
\(851\) −12.7434 −0.436838
\(852\) 0 0
\(853\) −10.3246 −0.353509 −0.176754 0.984255i \(-0.556560\pi\)
−0.176754 + 0.984255i \(0.556560\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 53.1789 1.81656 0.908278 0.418367i \(-0.137397\pi\)
0.908278 + 0.418367i \(0.137397\pi\)
\(858\) 0 0
\(859\) −10.2530 −0.349829 −0.174914 0.984584i \(-0.555965\pi\)
−0.174914 + 0.984584i \(0.555965\pi\)
\(860\) 0 0
\(861\) 4.09052 0.139404
\(862\) 0 0
\(863\) −10.7679 −0.366545 −0.183273 0.983062i \(-0.558669\pi\)
−0.183273 + 0.983062i \(0.558669\pi\)
\(864\) 0 0
\(865\) −4.27552 −0.145372
\(866\) 0 0
\(867\) −1.46427 −0.0497293
\(868\) 0 0
\(869\) 0.585462 0.0198604
\(870\) 0 0
\(871\) −71.1256 −2.41000
\(872\) 0 0
\(873\) 10.9786 0.371569
\(874\) 0 0
\(875\) −40.4998 −1.36914
\(876\) 0 0
\(877\) 22.7276 0.767457 0.383729 0.923446i \(-0.374640\pi\)
0.383729 + 0.923446i \(0.374640\pi\)
\(878\) 0 0
\(879\) −3.54790 −0.119668
\(880\) 0 0
\(881\) −8.44644 −0.284568 −0.142284 0.989826i \(-0.545445\pi\)
−0.142284 + 0.989826i \(0.545445\pi\)
\(882\) 0 0
\(883\) 45.0393 1.51569 0.757846 0.652434i \(-0.226252\pi\)
0.757846 + 0.652434i \(0.226252\pi\)
\(884\) 0 0
\(885\) −1.32150 −0.0444217
\(886\) 0 0
\(887\) −20.8463 −0.699950 −0.349975 0.936759i \(-0.613810\pi\)
−0.349975 + 0.936759i \(0.613810\pi\)
\(888\) 0 0
\(889\) 70.6086 2.36814
\(890\) 0 0
\(891\) 29.4433 0.986388
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 19.3618 0.647194
\(896\) 0 0
\(897\) −2.11760 −0.0707045
\(898\) 0 0
\(899\) −0.172615 −0.00575705
\(900\) 0 0
\(901\) −16.6111 −0.553396
\(902\) 0 0
\(903\) 4.97016 0.165396
\(904\) 0 0
\(905\) −50.8757 −1.69116
\(906\) 0 0
\(907\) 24.4109 0.810552 0.405276 0.914194i \(-0.367175\pi\)
0.405276 + 0.914194i \(0.367175\pi\)
\(908\) 0 0
\(909\) 22.6796 0.752234
\(910\) 0 0
\(911\) 24.2744 0.804248 0.402124 0.915585i \(-0.368272\pi\)
0.402124 + 0.915585i \(0.368272\pi\)
\(912\) 0 0
\(913\) −23.4250 −0.775255
\(914\) 0 0
\(915\) −1.00421 −0.0331982
\(916\) 0 0
\(917\) −12.3601 −0.408168
\(918\) 0 0
\(919\) −31.8568 −1.05086 −0.525429 0.850837i \(-0.676095\pi\)
−0.525429 + 0.850837i \(0.676095\pi\)
\(920\) 0 0
\(921\) −3.22050 −0.106119
\(922\) 0 0
\(923\) 9.19656 0.302708
\(924\) 0 0
\(925\) −2.66129 −0.0875026
\(926\) 0 0
\(927\) −49.5725 −1.62817
\(928\) 0 0
\(929\) −50.2087 −1.64730 −0.823648 0.567102i \(-0.808064\pi\)
−0.823648 + 0.567102i \(0.808064\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 4.75325 0.155614
\(934\) 0 0
\(935\) 40.7005 1.33105
\(936\) 0 0
\(937\) −4.65600 −0.152105 −0.0760525 0.997104i \(-0.524232\pi\)
−0.0760525 + 0.997104i \(0.524232\pi\)
\(938\) 0 0
\(939\) 1.35386 0.0441817
\(940\) 0 0
\(941\) −23.3973 −0.762731 −0.381366 0.924424i \(-0.624546\pi\)
−0.381366 + 0.924424i \(0.624546\pi\)
\(942\) 0 0
\(943\) −17.0863 −0.556407
\(944\) 0 0
\(945\) 7.85677 0.255581
\(946\) 0 0
\(947\) −57.4267 −1.86612 −0.933059 0.359724i \(-0.882871\pi\)
−0.933059 + 0.359724i \(0.882871\pi\)
\(948\) 0 0
\(949\) −47.4611 −1.54065
\(950\) 0 0
\(951\) −0.903827 −0.0293086
\(952\) 0 0
\(953\) −39.9933 −1.29551 −0.647755 0.761849i \(-0.724292\pi\)
−0.647755 + 0.761849i \(0.724292\pi\)
\(954\) 0 0
\(955\) −10.7434 −0.347648
\(956\) 0 0
\(957\) −0.0245584 −0.000793861 0
\(958\) 0 0
\(959\) −22.9112 −0.739840
\(960\) 0 0
\(961\) −19.1726 −0.618471
\(962\) 0 0
\(963\) 18.7434 0.603997
\(964\) 0 0
\(965\) −28.5254 −0.918265
\(966\) 0 0
\(967\) −3.88240 −0.124850 −0.0624248 0.998050i \(-0.519883\pi\)
−0.0624248 + 0.998050i \(0.519883\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.37483 −0.0441203 −0.0220602 0.999757i \(-0.507023\pi\)
−0.0220602 + 0.999757i \(0.507023\pi\)
\(972\) 0 0
\(973\) −35.1329 −1.12631
\(974\) 0 0
\(975\) −0.442232 −0.0141628
\(976\) 0 0
\(977\) 20.2541 0.647986 0.323993 0.946059i \(-0.394975\pi\)
0.323993 + 0.946059i \(0.394975\pi\)
\(978\) 0 0
\(979\) −45.2860 −1.44735
\(980\) 0 0
\(981\) −33.2222 −1.06070
\(982\) 0 0
\(983\) 12.7606 0.407000 0.203500 0.979075i \(-0.434768\pi\)
0.203500 + 0.979075i \(0.434768\pi\)
\(984\) 0 0
\(985\) −10.0000 −0.318626
\(986\) 0 0
\(987\) −6.02188 −0.191679
\(988\) 0 0
\(989\) −20.7606 −0.660149
\(990\) 0 0
\(991\) −18.9529 −0.602060 −0.301030 0.953615i \(-0.597330\pi\)
−0.301030 + 0.953615i \(0.597330\pi\)
\(992\) 0 0
\(993\) 1.51698 0.0481400
\(994\) 0 0
\(995\) −6.70306 −0.212501
\(996\) 0 0
\(997\) −12.0649 −0.382099 −0.191049 0.981580i \(-0.561189\pi\)
−0.191049 + 0.981580i \(0.561189\pi\)
\(998\) 0 0
\(999\) −4.75952 −0.150585
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.r.1.2 3
4.3 odd 2 5776.2.a.bk.1.2 3
19.7 even 3 152.2.i.c.49.2 6
19.11 even 3 152.2.i.c.121.2 yes 6
19.18 odd 2 2888.2.a.n.1.2 3
57.11 odd 6 1368.2.s.k.577.3 6
57.26 odd 6 1368.2.s.k.505.3 6
76.7 odd 6 304.2.i.f.49.2 6
76.11 odd 6 304.2.i.f.273.2 6
76.75 even 2 5776.2.a.bq.1.2 3
152.11 odd 6 1216.2.i.m.577.2 6
152.45 even 6 1216.2.i.n.961.2 6
152.83 odd 6 1216.2.i.m.961.2 6
152.125 even 6 1216.2.i.n.577.2 6
228.11 even 6 2736.2.s.y.577.3 6
228.83 even 6 2736.2.s.y.1873.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.i.c.49.2 6 19.7 even 3
152.2.i.c.121.2 yes 6 19.11 even 3
304.2.i.f.49.2 6 76.7 odd 6
304.2.i.f.273.2 6 76.11 odd 6
1216.2.i.m.577.2 6 152.11 odd 6
1216.2.i.m.961.2 6 152.83 odd 6
1216.2.i.n.577.2 6 152.125 even 6
1216.2.i.n.961.2 6 152.45 even 6
1368.2.s.k.505.3 6 57.26 odd 6
1368.2.s.k.577.3 6 57.11 odd 6
2736.2.s.y.577.3 6 228.11 even 6
2736.2.s.y.1873.3 6 228.83 even 6
2888.2.a.n.1.2 3 19.18 odd 2
2888.2.a.r.1.2 3 1.1 even 1 trivial
5776.2.a.bk.1.2 3 4.3 odd 2
5776.2.a.bq.1.2 3 76.75 even 2