Properties

Label 2888.2.a.r.1.1
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,1,0,1,0,-2,0,6,0,4,0,-1,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.81361\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.10278 q^{3} -1.81361 q^{5} -2.52444 q^{7} +1.42166 q^{9} -0.813607 q^{11} -4.33804 q^{13} +3.81361 q^{15} -0.916382 q^{17} +5.30833 q^{21} -1.81361 q^{23} -1.71083 q^{25} +3.31889 q^{27} -8.01916 q^{29} -9.30833 q^{31} +1.71083 q^{33} +4.57834 q^{35} -11.3083 q^{37} +9.12193 q^{39} -11.2056 q^{41} +9.96526 q^{43} -2.57834 q^{45} -5.64637 q^{47} -0.627213 q^{49} +1.92694 q^{51} +2.91638 q^{53} +1.47556 q^{55} +1.89722 q^{59} +6.59749 q^{61} -3.58890 q^{63} +7.86751 q^{65} +3.15165 q^{67} +3.81361 q^{69} -0.710831 q^{71} +0.627213 q^{73} +3.59749 q^{75} +2.05390 q^{77} -10.3380 q^{79} -11.2439 q^{81} +9.86248 q^{83} +1.66196 q^{85} +16.8625 q^{87} +13.5925 q^{89} +10.9511 q^{91} +19.5733 q^{93} +4.62721 q^{97} -1.15667 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} + q^{5} - 2 q^{7} + 6 q^{9} + 4 q^{11} - q^{13} + 5 q^{15} + 11 q^{17} - 6 q^{21} + q^{23} - 6 q^{25} + 19 q^{27} - 3 q^{29} - 6 q^{31} + 6 q^{33} + 12 q^{35} - 12 q^{37} - q^{39} - 19 q^{41}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.10278 −1.21404 −0.607019 0.794687i \(-0.707635\pi\)
−0.607019 + 0.794687i \(0.707635\pi\)
\(4\) 0 0
\(5\) −1.81361 −0.811069 −0.405535 0.914080i \(-0.632915\pi\)
−0.405535 + 0.914080i \(0.632915\pi\)
\(6\) 0 0
\(7\) −2.52444 −0.954148 −0.477074 0.878863i \(-0.658303\pi\)
−0.477074 + 0.878863i \(0.658303\pi\)
\(8\) 0 0
\(9\) 1.42166 0.473888
\(10\) 0 0
\(11\) −0.813607 −0.245312 −0.122656 0.992449i \(-0.539141\pi\)
−0.122656 + 0.992449i \(0.539141\pi\)
\(12\) 0 0
\(13\) −4.33804 −1.20316 −0.601579 0.798814i \(-0.705461\pi\)
−0.601579 + 0.798814i \(0.705461\pi\)
\(14\) 0 0
\(15\) 3.81361 0.984669
\(16\) 0 0
\(17\) −0.916382 −0.222255 −0.111128 0.993806i \(-0.535446\pi\)
−0.111128 + 0.993806i \(0.535446\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 5.30833 1.15837
\(22\) 0 0
\(23\) −1.81361 −0.378163 −0.189082 0.981961i \(-0.560551\pi\)
−0.189082 + 0.981961i \(0.560551\pi\)
\(24\) 0 0
\(25\) −1.71083 −0.342166
\(26\) 0 0
\(27\) 3.31889 0.638720
\(28\) 0 0
\(29\) −8.01916 −1.48912 −0.744560 0.667556i \(-0.767341\pi\)
−0.744560 + 0.667556i \(0.767341\pi\)
\(30\) 0 0
\(31\) −9.30833 −1.67182 −0.835912 0.548863i \(-0.815061\pi\)
−0.835912 + 0.548863i \(0.815061\pi\)
\(32\) 0 0
\(33\) 1.71083 0.297818
\(34\) 0 0
\(35\) 4.57834 0.773880
\(36\) 0 0
\(37\) −11.3083 −1.85908 −0.929539 0.368725i \(-0.879794\pi\)
−0.929539 + 0.368725i \(0.879794\pi\)
\(38\) 0 0
\(39\) 9.12193 1.46068
\(40\) 0 0
\(41\) −11.2056 −1.75001 −0.875006 0.484111i \(-0.839143\pi\)
−0.875006 + 0.484111i \(0.839143\pi\)
\(42\) 0 0
\(43\) 9.96526 1.51969 0.759844 0.650106i \(-0.225275\pi\)
0.759844 + 0.650106i \(0.225275\pi\)
\(44\) 0 0
\(45\) −2.57834 −0.384356
\(46\) 0 0
\(47\) −5.64637 −0.823608 −0.411804 0.911273i \(-0.635101\pi\)
−0.411804 + 0.911273i \(0.635101\pi\)
\(48\) 0 0
\(49\) −0.627213 −0.0896019
\(50\) 0 0
\(51\) 1.92694 0.269826
\(52\) 0 0
\(53\) 2.91638 0.400596 0.200298 0.979735i \(-0.435809\pi\)
0.200298 + 0.979735i \(0.435809\pi\)
\(54\) 0 0
\(55\) 1.47556 0.198965
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.89722 0.246998 0.123499 0.992345i \(-0.460588\pi\)
0.123499 + 0.992345i \(0.460588\pi\)
\(60\) 0 0
\(61\) 6.59749 0.844723 0.422361 0.906428i \(-0.361201\pi\)
0.422361 + 0.906428i \(0.361201\pi\)
\(62\) 0 0
\(63\) −3.58890 −0.452159
\(64\) 0 0
\(65\) 7.86751 0.975844
\(66\) 0 0
\(67\) 3.15165 0.385035 0.192518 0.981293i \(-0.438335\pi\)
0.192518 + 0.981293i \(0.438335\pi\)
\(68\) 0 0
\(69\) 3.81361 0.459104
\(70\) 0 0
\(71\) −0.710831 −0.0843602 −0.0421801 0.999110i \(-0.513430\pi\)
−0.0421801 + 0.999110i \(0.513430\pi\)
\(72\) 0 0
\(73\) 0.627213 0.0734097 0.0367049 0.999326i \(-0.488314\pi\)
0.0367049 + 0.999326i \(0.488314\pi\)
\(74\) 0 0
\(75\) 3.59749 0.415403
\(76\) 0 0
\(77\) 2.05390 0.234064
\(78\) 0 0
\(79\) −10.3380 −1.16312 −0.581560 0.813503i \(-0.697558\pi\)
−0.581560 + 0.813503i \(0.697558\pi\)
\(80\) 0 0
\(81\) −11.2439 −1.24932
\(82\) 0 0
\(83\) 9.86248 1.08255 0.541274 0.840846i \(-0.317942\pi\)
0.541274 + 0.840846i \(0.317942\pi\)
\(84\) 0 0
\(85\) 1.66196 0.180264
\(86\) 0 0
\(87\) 16.8625 1.80785
\(88\) 0 0
\(89\) 13.5925 1.44080 0.720399 0.693559i \(-0.243958\pi\)
0.720399 + 0.693559i \(0.243958\pi\)
\(90\) 0 0
\(91\) 10.9511 1.14799
\(92\) 0 0
\(93\) 19.5733 2.02966
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.62721 0.469822 0.234911 0.972017i \(-0.424520\pi\)
0.234911 + 0.972017i \(0.424520\pi\)
\(98\) 0 0
\(99\) −1.15667 −0.116250
\(100\) 0 0
\(101\) −2.97028 −0.295554 −0.147777 0.989021i \(-0.547212\pi\)
−0.147777 + 0.989021i \(0.547212\pi\)
\(102\) 0 0
\(103\) −0.470539 −0.0463636 −0.0231818 0.999731i \(-0.507380\pi\)
−0.0231818 + 0.999731i \(0.507380\pi\)
\(104\) 0 0
\(105\) −9.62721 −0.939520
\(106\) 0 0
\(107\) −10.2056 −0.986608 −0.493304 0.869857i \(-0.664211\pi\)
−0.493304 + 0.869857i \(0.664211\pi\)
\(108\) 0 0
\(109\) −3.75971 −0.360115 −0.180057 0.983656i \(-0.557628\pi\)
−0.180057 + 0.983656i \(0.557628\pi\)
\(110\) 0 0
\(111\) 23.7789 2.25699
\(112\) 0 0
\(113\) −15.0731 −1.41795 −0.708977 0.705232i \(-0.750843\pi\)
−0.708977 + 0.705232i \(0.750843\pi\)
\(114\) 0 0
\(115\) 3.28917 0.306717
\(116\) 0 0
\(117\) −6.16724 −0.570161
\(118\) 0 0
\(119\) 2.31335 0.212064
\(120\) 0 0
\(121\) −10.3380 −0.939822
\(122\) 0 0
\(123\) 23.5628 2.12458
\(124\) 0 0
\(125\) 12.1708 1.08859
\(126\) 0 0
\(127\) 3.02418 0.268353 0.134176 0.990957i \(-0.457161\pi\)
0.134176 + 0.990957i \(0.457161\pi\)
\(128\) 0 0
\(129\) −20.9547 −1.84496
\(130\) 0 0
\(131\) 15.3572 1.34176 0.670882 0.741564i \(-0.265916\pi\)
0.670882 + 0.741564i \(0.265916\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −6.01916 −0.518047
\(136\) 0 0
\(137\) −1.57834 −0.134846 −0.0674232 0.997724i \(-0.521478\pi\)
−0.0674232 + 0.997724i \(0.521478\pi\)
\(138\) 0 0
\(139\) −15.5244 −1.31677 −0.658383 0.752683i \(-0.728759\pi\)
−0.658383 + 0.752683i \(0.728759\pi\)
\(140\) 0 0
\(141\) 11.8730 0.999891
\(142\) 0 0
\(143\) 3.52946 0.295148
\(144\) 0 0
\(145\) 14.5436 1.20778
\(146\) 0 0
\(147\) 1.31889 0.108780
\(148\) 0 0
\(149\) −18.0575 −1.47933 −0.739663 0.672978i \(-0.765015\pi\)
−0.739663 + 0.672978i \(0.765015\pi\)
\(150\) 0 0
\(151\) 7.10278 0.578016 0.289008 0.957327i \(-0.406675\pi\)
0.289008 + 0.957327i \(0.406675\pi\)
\(152\) 0 0
\(153\) −1.30279 −0.105324
\(154\) 0 0
\(155\) 16.8816 1.35597
\(156\) 0 0
\(157\) 22.7491 1.81558 0.907790 0.419426i \(-0.137769\pi\)
0.907790 + 0.419426i \(0.137769\pi\)
\(158\) 0 0
\(159\) −6.13249 −0.486338
\(160\) 0 0
\(161\) 4.57834 0.360824
\(162\) 0 0
\(163\) 3.76473 0.294876 0.147438 0.989071i \(-0.452897\pi\)
0.147438 + 0.989071i \(0.452897\pi\)
\(164\) 0 0
\(165\) −3.10278 −0.241551
\(166\) 0 0
\(167\) 7.49472 0.579959 0.289979 0.957033i \(-0.406352\pi\)
0.289979 + 0.957033i \(0.406352\pi\)
\(168\) 0 0
\(169\) 5.81863 0.447587
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −12.3380 −0.938044 −0.469022 0.883186i \(-0.655394\pi\)
−0.469022 + 0.883186i \(0.655394\pi\)
\(174\) 0 0
\(175\) 4.31889 0.326477
\(176\) 0 0
\(177\) −3.98944 −0.299864
\(178\) 0 0
\(179\) 24.6464 1.84216 0.921078 0.389378i \(-0.127310\pi\)
0.921078 + 0.389378i \(0.127310\pi\)
\(180\) 0 0
\(181\) −0.931967 −0.0692726 −0.0346363 0.999400i \(-0.511027\pi\)
−0.0346363 + 0.999400i \(0.511027\pi\)
\(182\) 0 0
\(183\) −13.8730 −1.02553
\(184\) 0 0
\(185\) 20.5089 1.50784
\(186\) 0 0
\(187\) 0.745574 0.0545218
\(188\) 0 0
\(189\) −8.37833 −0.609434
\(190\) 0 0
\(191\) −12.4111 −0.898036 −0.449018 0.893523i \(-0.648226\pi\)
−0.449018 + 0.893523i \(0.648226\pi\)
\(192\) 0 0
\(193\) −1.66196 −0.119630 −0.0598151 0.998209i \(-0.519051\pi\)
−0.0598151 + 0.998209i \(0.519051\pi\)
\(194\) 0 0
\(195\) −16.5436 −1.18471
\(196\) 0 0
\(197\) 5.51388 0.392847 0.196424 0.980519i \(-0.437067\pi\)
0.196424 + 0.980519i \(0.437067\pi\)
\(198\) 0 0
\(199\) 15.9653 1.13175 0.565874 0.824492i \(-0.308539\pi\)
0.565874 + 0.824492i \(0.308539\pi\)
\(200\) 0 0
\(201\) −6.62721 −0.467448
\(202\) 0 0
\(203\) 20.2439 1.42084
\(204\) 0 0
\(205\) 20.3225 1.41938
\(206\) 0 0
\(207\) −2.57834 −0.179207
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −8.37636 −0.576652 −0.288326 0.957532i \(-0.593099\pi\)
−0.288326 + 0.957532i \(0.593099\pi\)
\(212\) 0 0
\(213\) 1.49472 0.102416
\(214\) 0 0
\(215\) −18.0731 −1.23257
\(216\) 0 0
\(217\) 23.4983 1.59517
\(218\) 0 0
\(219\) −1.31889 −0.0891222
\(220\) 0 0
\(221\) 3.97530 0.267408
\(222\) 0 0
\(223\) −3.98084 −0.266577 −0.133288 0.991077i \(-0.542554\pi\)
−0.133288 + 0.991077i \(0.542554\pi\)
\(224\) 0 0
\(225\) −2.43223 −0.162148
\(226\) 0 0
\(227\) 12.0680 0.800983 0.400492 0.916300i \(-0.368839\pi\)
0.400492 + 0.916300i \(0.368839\pi\)
\(228\) 0 0
\(229\) 18.9894 1.25486 0.627429 0.778674i \(-0.284107\pi\)
0.627429 + 0.778674i \(0.284107\pi\)
\(230\) 0 0
\(231\) −4.31889 −0.284162
\(232\) 0 0
\(233\) 19.1361 1.25365 0.626823 0.779162i \(-0.284355\pi\)
0.626823 + 0.779162i \(0.284355\pi\)
\(234\) 0 0
\(235\) 10.2403 0.668003
\(236\) 0 0
\(237\) 21.7386 1.41207
\(238\) 0 0
\(239\) −2.50885 −0.162284 −0.0811421 0.996703i \(-0.525857\pi\)
−0.0811421 + 0.996703i \(0.525857\pi\)
\(240\) 0 0
\(241\) −3.84333 −0.247570 −0.123785 0.992309i \(-0.539503\pi\)
−0.123785 + 0.992309i \(0.539503\pi\)
\(242\) 0 0
\(243\) 13.6867 0.877999
\(244\) 0 0
\(245\) 1.13752 0.0726733
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −20.7386 −1.31425
\(250\) 0 0
\(251\) −20.8766 −1.31772 −0.658860 0.752265i \(-0.728961\pi\)
−0.658860 + 0.752265i \(0.728961\pi\)
\(252\) 0 0
\(253\) 1.47556 0.0927678
\(254\) 0 0
\(255\) −3.49472 −0.218848
\(256\) 0 0
\(257\) 28.7038 1.79050 0.895248 0.445568i \(-0.146998\pi\)
0.895248 + 0.445568i \(0.146998\pi\)
\(258\) 0 0
\(259\) 28.5472 1.77383
\(260\) 0 0
\(261\) −11.4005 −0.705676
\(262\) 0 0
\(263\) −5.27358 −0.325183 −0.162592 0.986693i \(-0.551985\pi\)
−0.162592 + 0.986693i \(0.551985\pi\)
\(264\) 0 0
\(265\) −5.28917 −0.324911
\(266\) 0 0
\(267\) −28.5819 −1.74918
\(268\) 0 0
\(269\) −21.8575 −1.33267 −0.666336 0.745651i \(-0.732139\pi\)
−0.666336 + 0.745651i \(0.732139\pi\)
\(270\) 0 0
\(271\) 12.1864 0.740271 0.370135 0.928978i \(-0.379311\pi\)
0.370135 + 0.928978i \(0.379311\pi\)
\(272\) 0 0
\(273\) −23.0278 −1.39370
\(274\) 0 0
\(275\) 1.39194 0.0839374
\(276\) 0 0
\(277\) 0.632236 0.0379874 0.0189937 0.999820i \(-0.493954\pi\)
0.0189937 + 0.999820i \(0.493954\pi\)
\(278\) 0 0
\(279\) −13.2333 −0.792257
\(280\) 0 0
\(281\) −33.1361 −1.97673 −0.988366 0.152094i \(-0.951398\pi\)
−0.988366 + 0.152094i \(0.951398\pi\)
\(282\) 0 0
\(283\) −8.94610 −0.531790 −0.265895 0.964002i \(-0.585668\pi\)
−0.265895 + 0.964002i \(0.585668\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 28.2877 1.66977
\(288\) 0 0
\(289\) −16.1602 −0.950603
\(290\) 0 0
\(291\) −9.72999 −0.570382
\(292\) 0 0
\(293\) −28.0822 −1.64058 −0.820289 0.571950i \(-0.806187\pi\)
−0.820289 + 0.571950i \(0.806187\pi\)
\(294\) 0 0
\(295\) −3.44082 −0.200332
\(296\) 0 0
\(297\) −2.70027 −0.156685
\(298\) 0 0
\(299\) 7.86751 0.454990
\(300\) 0 0
\(301\) −25.1567 −1.45001
\(302\) 0 0
\(303\) 6.24583 0.358814
\(304\) 0 0
\(305\) −11.9653 −0.685129
\(306\) 0 0
\(307\) 31.2978 1.78626 0.893129 0.449801i \(-0.148505\pi\)
0.893129 + 0.449801i \(0.148505\pi\)
\(308\) 0 0
\(309\) 0.989437 0.0562871
\(310\) 0 0
\(311\) −9.00502 −0.510628 −0.255314 0.966858i \(-0.582179\pi\)
−0.255314 + 0.966858i \(0.582179\pi\)
\(312\) 0 0
\(313\) −4.36222 −0.246567 −0.123284 0.992371i \(-0.539343\pi\)
−0.123284 + 0.992371i \(0.539343\pi\)
\(314\) 0 0
\(315\) 6.50885 0.366732
\(316\) 0 0
\(317\) −4.33804 −0.243649 −0.121824 0.992552i \(-0.538874\pi\)
−0.121824 + 0.992552i \(0.538874\pi\)
\(318\) 0 0
\(319\) 6.52444 0.365298
\(320\) 0 0
\(321\) 21.4600 1.19778
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 7.42166 0.411680
\(326\) 0 0
\(327\) 7.90582 0.437193
\(328\) 0 0
\(329\) 14.2539 0.785843
\(330\) 0 0
\(331\) −10.6081 −0.583072 −0.291536 0.956560i \(-0.594166\pi\)
−0.291536 + 0.956560i \(0.594166\pi\)
\(332\) 0 0
\(333\) −16.0766 −0.880994
\(334\) 0 0
\(335\) −5.71585 −0.312291
\(336\) 0 0
\(337\) −0.892202 −0.0486013 −0.0243007 0.999705i \(-0.507736\pi\)
−0.0243007 + 0.999705i \(0.507736\pi\)
\(338\) 0 0
\(339\) 31.6952 1.72145
\(340\) 0 0
\(341\) 7.57331 0.410118
\(342\) 0 0
\(343\) 19.2544 1.03964
\(344\) 0 0
\(345\) −6.91638 −0.372365
\(346\) 0 0
\(347\) −17.0539 −0.915501 −0.457751 0.889081i \(-0.651345\pi\)
−0.457751 + 0.889081i \(0.651345\pi\)
\(348\) 0 0
\(349\) 17.8328 0.954566 0.477283 0.878750i \(-0.341622\pi\)
0.477283 + 0.878750i \(0.341622\pi\)
\(350\) 0 0
\(351\) −14.3975 −0.768481
\(352\) 0 0
\(353\) −22.4353 −1.19411 −0.597055 0.802201i \(-0.703662\pi\)
−0.597055 + 0.802201i \(0.703662\pi\)
\(354\) 0 0
\(355\) 1.28917 0.0684220
\(356\) 0 0
\(357\) −4.86445 −0.257454
\(358\) 0 0
\(359\) −21.4408 −1.13160 −0.565802 0.824541i \(-0.691433\pi\)
−0.565802 + 0.824541i \(0.691433\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 21.7386 1.14098
\(364\) 0 0
\(365\) −1.13752 −0.0595404
\(366\) 0 0
\(367\) −17.5869 −0.918030 −0.459015 0.888428i \(-0.651798\pi\)
−0.459015 + 0.888428i \(0.651798\pi\)
\(368\) 0 0
\(369\) −15.9305 −0.829309
\(370\) 0 0
\(371\) −7.36222 −0.382228
\(372\) 0 0
\(373\) 11.5194 0.596453 0.298226 0.954495i \(-0.403605\pi\)
0.298226 + 0.954495i \(0.403605\pi\)
\(374\) 0 0
\(375\) −25.5925 −1.32159
\(376\) 0 0
\(377\) 34.7875 1.79165
\(378\) 0 0
\(379\) −24.5472 −1.26090 −0.630452 0.776229i \(-0.717130\pi\)
−0.630452 + 0.776229i \(0.717130\pi\)
\(380\) 0 0
\(381\) −6.35917 −0.325790
\(382\) 0 0
\(383\) −16.6358 −0.850050 −0.425025 0.905182i \(-0.639735\pi\)
−0.425025 + 0.905182i \(0.639735\pi\)
\(384\) 0 0
\(385\) −3.72496 −0.189842
\(386\) 0 0
\(387\) 14.1672 0.720161
\(388\) 0 0
\(389\) −25.3275 −1.28415 −0.642077 0.766640i \(-0.721927\pi\)
−0.642077 + 0.766640i \(0.721927\pi\)
\(390\) 0 0
\(391\) 1.66196 0.0840487
\(392\) 0 0
\(393\) −32.2927 −1.62895
\(394\) 0 0
\(395\) 18.7491 0.943372
\(396\) 0 0
\(397\) −13.7542 −0.690302 −0.345151 0.938547i \(-0.612172\pi\)
−0.345151 + 0.938547i \(0.612172\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −24.4217 −1.21956 −0.609780 0.792571i \(-0.708742\pi\)
−0.609780 + 0.792571i \(0.708742\pi\)
\(402\) 0 0
\(403\) 40.3799 2.01147
\(404\) 0 0
\(405\) 20.3919 1.01328
\(406\) 0 0
\(407\) 9.20053 0.456053
\(408\) 0 0
\(409\) −6.68665 −0.330634 −0.165317 0.986241i \(-0.552865\pi\)
−0.165317 + 0.986241i \(0.552865\pi\)
\(410\) 0 0
\(411\) 3.31889 0.163709
\(412\) 0 0
\(413\) −4.78943 −0.235672
\(414\) 0 0
\(415\) −17.8867 −0.878022
\(416\) 0 0
\(417\) 32.6444 1.59860
\(418\) 0 0
\(419\) −7.58890 −0.370742 −0.185371 0.982669i \(-0.559349\pi\)
−0.185371 + 0.982669i \(0.559349\pi\)
\(420\) 0 0
\(421\) 19.7058 0.960402 0.480201 0.877158i \(-0.340564\pi\)
0.480201 + 0.877158i \(0.340564\pi\)
\(422\) 0 0
\(423\) −8.02723 −0.390297
\(424\) 0 0
\(425\) 1.56777 0.0760482
\(426\) 0 0
\(427\) −16.6550 −0.805990
\(428\) 0 0
\(429\) −7.42166 −0.358321
\(430\) 0 0
\(431\) 30.8852 1.48769 0.743844 0.668353i \(-0.233000\pi\)
0.743844 + 0.668353i \(0.233000\pi\)
\(432\) 0 0
\(433\) 5.81915 0.279650 0.139825 0.990176i \(-0.455346\pi\)
0.139825 + 0.990176i \(0.455346\pi\)
\(434\) 0 0
\(435\) −30.5819 −1.46629
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 2.97028 0.141764 0.0708819 0.997485i \(-0.477419\pi\)
0.0708819 + 0.997485i \(0.477419\pi\)
\(440\) 0 0
\(441\) −0.891685 −0.0424612
\(442\) 0 0
\(443\) 26.5733 1.26254 0.631268 0.775565i \(-0.282535\pi\)
0.631268 + 0.775565i \(0.282535\pi\)
\(444\) 0 0
\(445\) −24.6514 −1.16859
\(446\) 0 0
\(447\) 37.9708 1.79596
\(448\) 0 0
\(449\) −8.53303 −0.402699 −0.201349 0.979519i \(-0.564533\pi\)
−0.201349 + 0.979519i \(0.564533\pi\)
\(450\) 0 0
\(451\) 9.11691 0.429298
\(452\) 0 0
\(453\) −14.9355 −0.701733
\(454\) 0 0
\(455\) −19.8610 −0.931099
\(456\) 0 0
\(457\) 20.2892 0.949087 0.474544 0.880232i \(-0.342613\pi\)
0.474544 + 0.880232i \(0.342613\pi\)
\(458\) 0 0
\(459\) −3.04137 −0.141959
\(460\) 0 0
\(461\) 8.48416 0.395147 0.197573 0.980288i \(-0.436694\pi\)
0.197573 + 0.980288i \(0.436694\pi\)
\(462\) 0 0
\(463\) 7.72496 0.359010 0.179505 0.983757i \(-0.442550\pi\)
0.179505 + 0.983757i \(0.442550\pi\)
\(464\) 0 0
\(465\) −35.4983 −1.64619
\(466\) 0 0
\(467\) −7.18639 −0.332547 −0.166273 0.986080i \(-0.553173\pi\)
−0.166273 + 0.986080i \(0.553173\pi\)
\(468\) 0 0
\(469\) −7.95615 −0.367381
\(470\) 0 0
\(471\) −47.8363 −2.20418
\(472\) 0 0
\(473\) −8.10780 −0.372797
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.14611 0.189837
\(478\) 0 0
\(479\) 24.4358 1.11650 0.558250 0.829673i \(-0.311473\pi\)
0.558250 + 0.829673i \(0.311473\pi\)
\(480\) 0 0
\(481\) 49.0560 2.23676
\(482\) 0 0
\(483\) −9.62721 −0.438053
\(484\) 0 0
\(485\) −8.39194 −0.381059
\(486\) 0 0
\(487\) −37.2772 −1.68919 −0.844595 0.535406i \(-0.820158\pi\)
−0.844595 + 0.535406i \(0.820158\pi\)
\(488\) 0 0
\(489\) −7.91638 −0.357991
\(490\) 0 0
\(491\) −18.8569 −0.851002 −0.425501 0.904958i \(-0.639902\pi\)
−0.425501 + 0.904958i \(0.639902\pi\)
\(492\) 0 0
\(493\) 7.34861 0.330965
\(494\) 0 0
\(495\) 2.09775 0.0942869
\(496\) 0 0
\(497\) 1.79445 0.0804921
\(498\) 0 0
\(499\) −16.3678 −0.732722 −0.366361 0.930473i \(-0.619396\pi\)
−0.366361 + 0.930473i \(0.619396\pi\)
\(500\) 0 0
\(501\) −15.7597 −0.704092
\(502\) 0 0
\(503\) −37.5869 −1.67592 −0.837959 0.545733i \(-0.816251\pi\)
−0.837959 + 0.545733i \(0.816251\pi\)
\(504\) 0 0
\(505\) 5.38692 0.239715
\(506\) 0 0
\(507\) −12.2353 −0.543387
\(508\) 0 0
\(509\) −15.7597 −0.698537 −0.349268 0.937023i \(-0.613570\pi\)
−0.349268 + 0.937023i \(0.613570\pi\)
\(510\) 0 0
\(511\) −1.58336 −0.0700437
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.853372 0.0376041
\(516\) 0 0
\(517\) 4.59392 0.202041
\(518\) 0 0
\(519\) 25.9441 1.13882
\(520\) 0 0
\(521\) 9.47411 0.415068 0.207534 0.978228i \(-0.433456\pi\)
0.207534 + 0.978228i \(0.433456\pi\)
\(522\) 0 0
\(523\) −38.3764 −1.67808 −0.839040 0.544069i \(-0.816883\pi\)
−0.839040 + 0.544069i \(0.816883\pi\)
\(524\) 0 0
\(525\) −9.08165 −0.396356
\(526\) 0 0
\(527\) 8.52998 0.371572
\(528\) 0 0
\(529\) −19.7108 −0.856993
\(530\) 0 0
\(531\) 2.69721 0.117049
\(532\) 0 0
\(533\) 48.6102 2.10554
\(534\) 0 0
\(535\) 18.5089 0.800207
\(536\) 0 0
\(537\) −51.8258 −2.23645
\(538\) 0 0
\(539\) 0.510305 0.0219804
\(540\) 0 0
\(541\) 1.18137 0.0507911 0.0253955 0.999677i \(-0.491915\pi\)
0.0253955 + 0.999677i \(0.491915\pi\)
\(542\) 0 0
\(543\) 1.95972 0.0840995
\(544\) 0 0
\(545\) 6.81863 0.292078
\(546\) 0 0
\(547\) 23.6025 1.00917 0.504585 0.863362i \(-0.331645\pi\)
0.504585 + 0.863362i \(0.331645\pi\)
\(548\) 0 0
\(549\) 9.37941 0.400304
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 26.0978 1.10979
\(554\) 0 0
\(555\) −43.1255 −1.83058
\(556\) 0 0
\(557\) 3.08362 0.130657 0.0653286 0.997864i \(-0.479190\pi\)
0.0653286 + 0.997864i \(0.479190\pi\)
\(558\) 0 0
\(559\) −43.2297 −1.82842
\(560\) 0 0
\(561\) −1.56777 −0.0661915
\(562\) 0 0
\(563\) 3.46143 0.145882 0.0729409 0.997336i \(-0.476762\pi\)
0.0729409 + 0.997336i \(0.476762\pi\)
\(564\) 0 0
\(565\) 27.3366 1.15006
\(566\) 0 0
\(567\) 28.3844 1.19203
\(568\) 0 0
\(569\) −26.6550 −1.11743 −0.558717 0.829358i \(-0.688706\pi\)
−0.558717 + 0.829358i \(0.688706\pi\)
\(570\) 0 0
\(571\) 4.23527 0.177241 0.0886203 0.996065i \(-0.471754\pi\)
0.0886203 + 0.996065i \(0.471754\pi\)
\(572\) 0 0
\(573\) 26.0978 1.09025
\(574\) 0 0
\(575\) 3.10278 0.129395
\(576\) 0 0
\(577\) 37.0036 1.54048 0.770239 0.637755i \(-0.220137\pi\)
0.770239 + 0.637755i \(0.220137\pi\)
\(578\) 0 0
\(579\) 3.49472 0.145236
\(580\) 0 0
\(581\) −24.8972 −1.03291
\(582\) 0 0
\(583\) −2.37279 −0.0982708
\(584\) 0 0
\(585\) 11.1849 0.462440
\(586\) 0 0
\(587\) −22.1114 −0.912634 −0.456317 0.889817i \(-0.650832\pi\)
−0.456317 + 0.889817i \(0.650832\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −11.5944 −0.476932
\(592\) 0 0
\(593\) −31.5683 −1.29635 −0.648177 0.761490i \(-0.724468\pi\)
−0.648177 + 0.761490i \(0.724468\pi\)
\(594\) 0 0
\(595\) −4.19550 −0.171999
\(596\) 0 0
\(597\) −33.5713 −1.37398
\(598\) 0 0
\(599\) 20.7264 0.846858 0.423429 0.905929i \(-0.360826\pi\)
0.423429 + 0.905929i \(0.360826\pi\)
\(600\) 0 0
\(601\) −22.6902 −0.925553 −0.462777 0.886475i \(-0.653147\pi\)
−0.462777 + 0.886475i \(0.653147\pi\)
\(602\) 0 0
\(603\) 4.48059 0.182464
\(604\) 0 0
\(605\) 18.7491 0.762261
\(606\) 0 0
\(607\) 37.1099 1.50625 0.753123 0.657880i \(-0.228547\pi\)
0.753123 + 0.657880i \(0.228547\pi\)
\(608\) 0 0
\(609\) −42.5683 −1.72495
\(610\) 0 0
\(611\) 24.4942 0.990929
\(612\) 0 0
\(613\) 12.0731 0.487626 0.243813 0.969822i \(-0.421602\pi\)
0.243813 + 0.969822i \(0.421602\pi\)
\(614\) 0 0
\(615\) −42.7336 −1.72318
\(616\) 0 0
\(617\) 3.30330 0.132986 0.0664930 0.997787i \(-0.478819\pi\)
0.0664930 + 0.997787i \(0.478819\pi\)
\(618\) 0 0
\(619\) −26.0867 −1.04851 −0.524256 0.851561i \(-0.675656\pi\)
−0.524256 + 0.851561i \(0.675656\pi\)
\(620\) 0 0
\(621\) −6.01916 −0.241540
\(622\) 0 0
\(623\) −34.3133 −1.37474
\(624\) 0 0
\(625\) −13.5189 −0.540756
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.3627 0.413190
\(630\) 0 0
\(631\) 13.4892 0.536996 0.268498 0.963280i \(-0.413473\pi\)
0.268498 + 0.963280i \(0.413473\pi\)
\(632\) 0 0
\(633\) 17.6136 0.700078
\(634\) 0 0
\(635\) −5.48467 −0.217653
\(636\) 0 0
\(637\) 2.72088 0.107805
\(638\) 0 0
\(639\) −1.01056 −0.0399772
\(640\) 0 0
\(641\) −5.22668 −0.206441 −0.103221 0.994658i \(-0.532915\pi\)
−0.103221 + 0.994658i \(0.532915\pi\)
\(642\) 0 0
\(643\) −28.6116 −1.12833 −0.564166 0.825661i \(-0.690802\pi\)
−0.564166 + 0.825661i \(0.690802\pi\)
\(644\) 0 0
\(645\) 38.0036 1.49639
\(646\) 0 0
\(647\) −23.3139 −0.916563 −0.458281 0.888807i \(-0.651535\pi\)
−0.458281 + 0.888807i \(0.651535\pi\)
\(648\) 0 0
\(649\) −1.54359 −0.0605914
\(650\) 0 0
\(651\) −49.4116 −1.93659
\(652\) 0 0
\(653\) 9.83276 0.384786 0.192393 0.981318i \(-0.438375\pi\)
0.192393 + 0.981318i \(0.438375\pi\)
\(654\) 0 0
\(655\) −27.8519 −1.08826
\(656\) 0 0
\(657\) 0.891685 0.0347880
\(658\) 0 0
\(659\) −49.9341 −1.94516 −0.972578 0.232577i \(-0.925284\pi\)
−0.972578 + 0.232577i \(0.925284\pi\)
\(660\) 0 0
\(661\) 22.7053 0.883134 0.441567 0.897228i \(-0.354423\pi\)
0.441567 + 0.897228i \(0.354423\pi\)
\(662\) 0 0
\(663\) −8.35917 −0.324643
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 14.5436 0.563130
\(668\) 0 0
\(669\) 8.37082 0.323635
\(670\) 0 0
\(671\) −5.36776 −0.207220
\(672\) 0 0
\(673\) −3.96169 −0.152712 −0.0763559 0.997081i \(-0.524329\pi\)
−0.0763559 + 0.997081i \(0.524329\pi\)
\(674\) 0 0
\(675\) −5.67806 −0.218549
\(676\) 0 0
\(677\) −2.74557 −0.105521 −0.0527605 0.998607i \(-0.516802\pi\)
−0.0527605 + 0.998607i \(0.516802\pi\)
\(678\) 0 0
\(679\) −11.6811 −0.448280
\(680\) 0 0
\(681\) −25.3764 −0.972424
\(682\) 0 0
\(683\) 33.7633 1.29192 0.645958 0.763373i \(-0.276458\pi\)
0.645958 + 0.763373i \(0.276458\pi\)
\(684\) 0 0
\(685\) 2.86248 0.109370
\(686\) 0 0
\(687\) −39.9305 −1.52344
\(688\) 0 0
\(689\) −12.6514 −0.481980
\(690\) 0 0
\(691\) 7.58890 0.288695 0.144348 0.989527i \(-0.453892\pi\)
0.144348 + 0.989527i \(0.453892\pi\)
\(692\) 0 0
\(693\) 2.91995 0.110920
\(694\) 0 0
\(695\) 28.1552 1.06799
\(696\) 0 0
\(697\) 10.2686 0.388949
\(698\) 0 0
\(699\) −40.2388 −1.52197
\(700\) 0 0
\(701\) −34.8313 −1.31556 −0.657780 0.753210i \(-0.728504\pi\)
−0.657780 + 0.753210i \(0.728504\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −21.5330 −0.810981
\(706\) 0 0
\(707\) 7.49829 0.282002
\(708\) 0 0
\(709\) 28.6358 1.07544 0.537720 0.843123i \(-0.319286\pi\)
0.537720 + 0.843123i \(0.319286\pi\)
\(710\) 0 0
\(711\) −14.6972 −0.551189
\(712\) 0 0
\(713\) 16.8816 0.632222
\(714\) 0 0
\(715\) −6.40105 −0.239386
\(716\) 0 0
\(717\) 5.27555 0.197019
\(718\) 0 0
\(719\) −41.9441 −1.56425 −0.782126 0.623120i \(-0.785865\pi\)
−0.782126 + 0.623120i \(0.785865\pi\)
\(720\) 0 0
\(721\) 1.18785 0.0442377
\(722\) 0 0
\(723\) 8.08165 0.300560
\(724\) 0 0
\(725\) 13.7194 0.509527
\(726\) 0 0
\(727\) 38.0731 1.41205 0.706026 0.708186i \(-0.250486\pi\)
0.706026 + 0.708186i \(0.250486\pi\)
\(728\) 0 0
\(729\) 4.95164 0.183394
\(730\) 0 0
\(731\) −9.13198 −0.337758
\(732\) 0 0
\(733\) 2.07502 0.0766428 0.0383214 0.999265i \(-0.487799\pi\)
0.0383214 + 0.999265i \(0.487799\pi\)
\(734\) 0 0
\(735\) −2.39194 −0.0882282
\(736\) 0 0
\(737\) −2.56420 −0.0944537
\(738\) 0 0
\(739\) 33.5316 1.23348 0.616740 0.787167i \(-0.288453\pi\)
0.616740 + 0.787167i \(0.288453\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −43.8308 −1.60800 −0.803998 0.594632i \(-0.797298\pi\)
−0.803998 + 0.594632i \(0.797298\pi\)
\(744\) 0 0
\(745\) 32.7491 1.19984
\(746\) 0 0
\(747\) 14.0211 0.513006
\(748\) 0 0
\(749\) 25.7633 0.941370
\(750\) 0 0
\(751\) −12.0347 −0.439154 −0.219577 0.975595i \(-0.570468\pi\)
−0.219577 + 0.975595i \(0.570468\pi\)
\(752\) 0 0
\(753\) 43.8988 1.59976
\(754\) 0 0
\(755\) −12.8816 −0.468811
\(756\) 0 0
\(757\) 14.5819 0.529988 0.264994 0.964250i \(-0.414630\pi\)
0.264994 + 0.964250i \(0.414630\pi\)
\(758\) 0 0
\(759\) −3.10278 −0.112624
\(760\) 0 0
\(761\) −41.3069 −1.49737 −0.748686 0.662924i \(-0.769315\pi\)
−0.748686 + 0.662924i \(0.769315\pi\)
\(762\) 0 0
\(763\) 9.49115 0.343603
\(764\) 0 0
\(765\) 2.36274 0.0854251
\(766\) 0 0
\(767\) −8.23025 −0.297177
\(768\) 0 0
\(769\) 9.17029 0.330689 0.165345 0.986236i \(-0.447126\pi\)
0.165345 + 0.986236i \(0.447126\pi\)
\(770\) 0 0
\(771\) −60.3577 −2.17373
\(772\) 0 0
\(773\) −1.58693 −0.0570779 −0.0285390 0.999593i \(-0.509085\pi\)
−0.0285390 + 0.999593i \(0.509085\pi\)
\(774\) 0 0
\(775\) 15.9250 0.572042
\(776\) 0 0
\(777\) −60.0283 −2.15350
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0.578337 0.0206945
\(782\) 0 0
\(783\) −26.6147 −0.951131
\(784\) 0 0
\(785\) −41.2580 −1.47256
\(786\) 0 0
\(787\) −17.4514 −0.622075 −0.311037 0.950398i \(-0.600676\pi\)
−0.311037 + 0.950398i \(0.600676\pi\)
\(788\) 0 0
\(789\) 11.0892 0.394784
\(790\) 0 0
\(791\) 38.0510 1.35294
\(792\) 0 0
\(793\) −28.6202 −1.01633
\(794\) 0 0
\(795\) 11.1219 0.394454
\(796\) 0 0
\(797\) −23.5038 −0.832548 −0.416274 0.909239i \(-0.636664\pi\)
−0.416274 + 0.909239i \(0.636664\pi\)
\(798\) 0 0
\(799\) 5.17423 0.183051
\(800\) 0 0
\(801\) 19.3239 0.682777
\(802\) 0 0
\(803\) −0.510305 −0.0180083
\(804\) 0 0
\(805\) −8.30330 −0.292653
\(806\) 0 0
\(807\) 45.9613 1.61792
\(808\) 0 0
\(809\) −35.2686 −1.23998 −0.619988 0.784611i \(-0.712863\pi\)
−0.619988 + 0.784611i \(0.712863\pi\)
\(810\) 0 0
\(811\) 36.2091 1.27147 0.635737 0.771906i \(-0.280696\pi\)
0.635737 + 0.771906i \(0.280696\pi\)
\(812\) 0 0
\(813\) −25.6252 −0.898717
\(814\) 0 0
\(815\) −6.82774 −0.239165
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 15.5688 0.544018
\(820\) 0 0
\(821\) −8.96474 −0.312872 −0.156436 0.987688i \(-0.550000\pi\)
−0.156436 + 0.987688i \(0.550000\pi\)
\(822\) 0 0
\(823\) −5.38692 −0.187776 −0.0938881 0.995583i \(-0.529930\pi\)
−0.0938881 + 0.995583i \(0.529930\pi\)
\(824\) 0 0
\(825\) −2.92694 −0.101903
\(826\) 0 0
\(827\) 17.9355 0.623680 0.311840 0.950135i \(-0.399055\pi\)
0.311840 + 0.950135i \(0.399055\pi\)
\(828\) 0 0
\(829\) 30.6550 1.06469 0.532345 0.846527i \(-0.321311\pi\)
0.532345 + 0.846527i \(0.321311\pi\)
\(830\) 0 0
\(831\) −1.32945 −0.0461181
\(832\) 0 0
\(833\) 0.574766 0.0199145
\(834\) 0 0
\(835\) −13.5925 −0.470387
\(836\) 0 0
\(837\) −30.8933 −1.06783
\(838\) 0 0
\(839\) 26.6641 0.920546 0.460273 0.887777i \(-0.347752\pi\)
0.460273 + 0.887777i \(0.347752\pi\)
\(840\) 0 0
\(841\) 35.3069 1.21748
\(842\) 0 0
\(843\) 69.6777 2.39983
\(844\) 0 0
\(845\) −10.5527 −0.363024
\(846\) 0 0
\(847\) 26.0978 0.896729
\(848\) 0 0
\(849\) 18.8116 0.645614
\(850\) 0 0
\(851\) 20.5089 0.703034
\(852\) 0 0
\(853\) −11.0625 −0.378773 −0.189386 0.981903i \(-0.560650\pi\)
−0.189386 + 0.981903i \(0.560650\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.04939 −0.104165 −0.0520826 0.998643i \(-0.516586\pi\)
−0.0520826 + 0.998643i \(0.516586\pi\)
\(858\) 0 0
\(859\) −14.6600 −0.500192 −0.250096 0.968221i \(-0.580462\pi\)
−0.250096 + 0.968221i \(0.580462\pi\)
\(860\) 0 0
\(861\) −59.4827 −2.02717
\(862\) 0 0
\(863\) 8.78943 0.299196 0.149598 0.988747i \(-0.452202\pi\)
0.149598 + 0.988747i \(0.452202\pi\)
\(864\) 0 0
\(865\) 22.3764 0.760819
\(866\) 0 0
\(867\) 33.9814 1.15407
\(868\) 0 0
\(869\) 8.41110 0.285327
\(870\) 0 0
\(871\) −13.6720 −0.463258
\(872\) 0 0
\(873\) 6.57834 0.222643
\(874\) 0 0
\(875\) −30.7244 −1.03868
\(876\) 0 0
\(877\) 58.6741 1.98128 0.990642 0.136485i \(-0.0435806\pi\)
0.990642 + 0.136485i \(0.0435806\pi\)
\(878\) 0 0
\(879\) 59.0505 1.99172
\(880\) 0 0
\(881\) 2.55416 0.0860517 0.0430259 0.999074i \(-0.486300\pi\)
0.0430259 + 0.999074i \(0.486300\pi\)
\(882\) 0 0
\(883\) 24.9945 0.841131 0.420565 0.907262i \(-0.361832\pi\)
0.420565 + 0.907262i \(0.361832\pi\)
\(884\) 0 0
\(885\) 7.23527 0.243211
\(886\) 0 0
\(887\) −35.7597 −1.20069 −0.600347 0.799740i \(-0.704971\pi\)
−0.600347 + 0.799740i \(0.704971\pi\)
\(888\) 0 0
\(889\) −7.63435 −0.256048
\(890\) 0 0
\(891\) 9.14808 0.306472
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −44.6988 −1.49412
\(896\) 0 0
\(897\) −16.5436 −0.552375
\(898\) 0 0
\(899\) 74.6449 2.48955
\(900\) 0 0
\(901\) −2.67252 −0.0890345
\(902\) 0 0
\(903\) 52.8988 1.76036
\(904\) 0 0
\(905\) 1.69022 0.0561849
\(906\) 0 0
\(907\) −12.2600 −0.407085 −0.203543 0.979066i \(-0.565246\pi\)
−0.203543 + 0.979066i \(0.565246\pi\)
\(908\) 0 0
\(909\) −4.22274 −0.140059
\(910\) 0 0
\(911\) 33.0816 1.09604 0.548022 0.836464i \(-0.315381\pi\)
0.548022 + 0.836464i \(0.315381\pi\)
\(912\) 0 0
\(913\) −8.02418 −0.265562
\(914\) 0 0
\(915\) 25.1602 0.831772
\(916\) 0 0
\(917\) −38.7683 −1.28024
\(918\) 0 0
\(919\) −39.1950 −1.29292 −0.646462 0.762946i \(-0.723752\pi\)
−0.646462 + 0.762946i \(0.723752\pi\)
\(920\) 0 0
\(921\) −65.8122 −2.16858
\(922\) 0 0
\(923\) 3.08362 0.101499
\(924\) 0 0
\(925\) 19.3466 0.636114
\(926\) 0 0
\(927\) −0.668948 −0.0219711
\(928\) 0 0
\(929\) 53.9482 1.76998 0.884992 0.465607i \(-0.154164\pi\)
0.884992 + 0.465607i \(0.154164\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 18.9355 0.619922
\(934\) 0 0
\(935\) −1.35218 −0.0442209
\(936\) 0 0
\(937\) −44.2716 −1.44629 −0.723145 0.690696i \(-0.757304\pi\)
−0.723145 + 0.690696i \(0.757304\pi\)
\(938\) 0 0
\(939\) 9.17278 0.299342
\(940\) 0 0
\(941\) 14.9930 0.488758 0.244379 0.969680i \(-0.421416\pi\)
0.244379 + 0.969680i \(0.421416\pi\)
\(942\) 0 0
\(943\) 20.3225 0.661790
\(944\) 0 0
\(945\) 15.1950 0.494293
\(946\) 0 0
\(947\) 48.4429 1.57418 0.787092 0.616836i \(-0.211586\pi\)
0.787092 + 0.616836i \(0.211586\pi\)
\(948\) 0 0
\(949\) −2.72088 −0.0883234
\(950\) 0 0
\(951\) 9.12193 0.295799
\(952\) 0 0
\(953\) −1.85337 −0.0600366 −0.0300183 0.999549i \(-0.509557\pi\)
−0.0300183 + 0.999549i \(0.509557\pi\)
\(954\) 0 0
\(955\) 22.5089 0.728369
\(956\) 0 0
\(957\) −13.7194 −0.443486
\(958\) 0 0
\(959\) 3.98441 0.128663
\(960\) 0 0
\(961\) 55.6449 1.79500
\(962\) 0 0
\(963\) −14.5089 −0.467541
\(964\) 0 0
\(965\) 3.01413 0.0970284
\(966\) 0 0
\(967\) 10.5436 0.339059 0.169530 0.985525i \(-0.445775\pi\)
0.169530 + 0.985525i \(0.445775\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.95666 0.191158 0.0955792 0.995422i \(-0.469530\pi\)
0.0955792 + 0.995422i \(0.469530\pi\)
\(972\) 0 0
\(973\) 39.1905 1.25639
\(974\) 0 0
\(975\) −15.6061 −0.499795
\(976\) 0 0
\(977\) −10.7980 −0.345459 −0.172730 0.984969i \(-0.555259\pi\)
−0.172730 + 0.984969i \(0.555259\pi\)
\(978\) 0 0
\(979\) −11.0589 −0.353445
\(980\) 0 0
\(981\) −5.34504 −0.170654
\(982\) 0 0
\(983\) 10.0731 0.321281 0.160640 0.987013i \(-0.448644\pi\)
0.160640 + 0.987013i \(0.448644\pi\)
\(984\) 0 0
\(985\) −10.0000 −0.318626
\(986\) 0 0
\(987\) −29.9728 −0.954044
\(988\) 0 0
\(989\) −18.0731 −0.574690
\(990\) 0 0
\(991\) −36.3169 −1.15364 −0.576822 0.816870i \(-0.695708\pi\)
−0.576822 + 0.816870i \(0.695708\pi\)
\(992\) 0 0
\(993\) 22.3064 0.707871
\(994\) 0 0
\(995\) −28.9547 −0.917926
\(996\) 0 0
\(997\) 29.7441 0.942006 0.471003 0.882132i \(-0.343892\pi\)
0.471003 + 0.882132i \(0.343892\pi\)
\(998\) 0 0
\(999\) −37.5311 −1.18743
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.r.1.1 3
4.3 odd 2 5776.2.a.bk.1.3 3
19.7 even 3 152.2.i.c.49.3 6
19.11 even 3 152.2.i.c.121.3 yes 6
19.18 odd 2 2888.2.a.n.1.3 3
57.11 odd 6 1368.2.s.k.577.1 6
57.26 odd 6 1368.2.s.k.505.1 6
76.7 odd 6 304.2.i.f.49.1 6
76.11 odd 6 304.2.i.f.273.1 6
76.75 even 2 5776.2.a.bq.1.1 3
152.11 odd 6 1216.2.i.m.577.3 6
152.45 even 6 1216.2.i.n.961.1 6
152.83 odd 6 1216.2.i.m.961.3 6
152.125 even 6 1216.2.i.n.577.1 6
228.11 even 6 2736.2.s.y.577.1 6
228.83 even 6 2736.2.s.y.1873.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.i.c.49.3 6 19.7 even 3
152.2.i.c.121.3 yes 6 19.11 even 3
304.2.i.f.49.1 6 76.7 odd 6
304.2.i.f.273.1 6 76.11 odd 6
1216.2.i.m.577.3 6 152.11 odd 6
1216.2.i.m.961.3 6 152.83 odd 6
1216.2.i.n.577.1 6 152.125 even 6
1216.2.i.n.961.1 6 152.45 even 6
1368.2.s.k.505.1 6 57.26 odd 6
1368.2.s.k.577.1 6 57.11 odd 6
2736.2.s.y.577.1 6 228.11 even 6
2736.2.s.y.1873.1 6 228.83 even 6
2888.2.a.n.1.3 3 19.18 odd 2
2888.2.a.r.1.1 3 1.1 even 1 trivial
5776.2.a.bk.1.3 3 4.3 odd 2
5776.2.a.bq.1.1 3 76.75 even 2