Properties

Label 2888.2.a.q.1.3
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,0,0,-3,0,-3,0,3,0,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.87939 q^{3} +0.347296 q^{5} -4.75877 q^{7} +0.532089 q^{9} +4.75877 q^{11} -1.87939 q^{13} +0.652704 q^{15} +1.53209 q^{17} -8.94356 q^{21} -6.10607 q^{23} -4.87939 q^{25} -4.63816 q^{27} -1.98545 q^{29} -3.36959 q^{31} +8.94356 q^{33} -1.65270 q^{35} -3.38919 q^{37} -3.53209 q^{39} -4.49020 q^{41} +2.10607 q^{43} +0.184793 q^{45} -4.92127 q^{47} +15.6459 q^{49} +2.87939 q^{51} -12.5594 q^{53} +1.65270 q^{55} +5.66044 q^{59} +9.99319 q^{61} -2.53209 q^{63} -0.652704 q^{65} +10.5963 q^{67} -11.4757 q^{69} +11.4953 q^{71} -14.6186 q^{73} -9.17024 q^{75} -22.6459 q^{77} +2.36184 q^{79} -10.3131 q^{81} -11.5371 q^{83} +0.532089 q^{85} -3.73143 q^{87} +5.63816 q^{89} +8.94356 q^{91} -6.33275 q^{93} +7.66044 q^{97} +2.53209 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{7} - 3 q^{9} + 3 q^{11} + 3 q^{15} - 12 q^{21} - 6 q^{23} - 9 q^{25} + 3 q^{27} + 12 q^{29} - 3 q^{31} + 12 q^{33} - 6 q^{35} - 6 q^{37} - 6 q^{39} - 12 q^{41} - 6 q^{43} - 3 q^{45} - 6 q^{47}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.87939 1.08506 0.542532 0.840035i \(-0.317466\pi\)
0.542532 + 0.840035i \(0.317466\pi\)
\(4\) 0 0
\(5\) 0.347296 0.155316 0.0776578 0.996980i \(-0.475256\pi\)
0.0776578 + 0.996980i \(0.475256\pi\)
\(6\) 0 0
\(7\) −4.75877 −1.79865 −0.899323 0.437285i \(-0.855940\pi\)
−0.899323 + 0.437285i \(0.855940\pi\)
\(8\) 0 0
\(9\) 0.532089 0.177363
\(10\) 0 0
\(11\) 4.75877 1.43482 0.717412 0.696650i \(-0.245327\pi\)
0.717412 + 0.696650i \(0.245327\pi\)
\(12\) 0 0
\(13\) −1.87939 −0.521248 −0.260624 0.965440i \(-0.583928\pi\)
−0.260624 + 0.965440i \(0.583928\pi\)
\(14\) 0 0
\(15\) 0.652704 0.168527
\(16\) 0 0
\(17\) 1.53209 0.371586 0.185793 0.982589i \(-0.440515\pi\)
0.185793 + 0.982589i \(0.440515\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) −8.94356 −1.95165
\(22\) 0 0
\(23\) −6.10607 −1.27320 −0.636601 0.771193i \(-0.719660\pi\)
−0.636601 + 0.771193i \(0.719660\pi\)
\(24\) 0 0
\(25\) −4.87939 −0.975877
\(26\) 0 0
\(27\) −4.63816 −0.892613
\(28\) 0 0
\(29\) −1.98545 −0.368689 −0.184345 0.982862i \(-0.559016\pi\)
−0.184345 + 0.982862i \(0.559016\pi\)
\(30\) 0 0
\(31\) −3.36959 −0.605195 −0.302598 0.953118i \(-0.597854\pi\)
−0.302598 + 0.953118i \(0.597854\pi\)
\(32\) 0 0
\(33\) 8.94356 1.55687
\(34\) 0 0
\(35\) −1.65270 −0.279358
\(36\) 0 0
\(37\) −3.38919 −0.557179 −0.278589 0.960410i \(-0.589867\pi\)
−0.278589 + 0.960410i \(0.589867\pi\)
\(38\) 0 0
\(39\) −3.53209 −0.565587
\(40\) 0 0
\(41\) −4.49020 −0.701251 −0.350626 0.936516i \(-0.614031\pi\)
−0.350626 + 0.936516i \(0.614031\pi\)
\(42\) 0 0
\(43\) 2.10607 0.321172 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(44\) 0 0
\(45\) 0.184793 0.0275472
\(46\) 0 0
\(47\) −4.92127 −0.717842 −0.358921 0.933368i \(-0.616855\pi\)
−0.358921 + 0.933368i \(0.616855\pi\)
\(48\) 0 0
\(49\) 15.6459 2.23513
\(50\) 0 0
\(51\) 2.87939 0.403195
\(52\) 0 0
\(53\) −12.5594 −1.72517 −0.862585 0.505912i \(-0.831156\pi\)
−0.862585 + 0.505912i \(0.831156\pi\)
\(54\) 0 0
\(55\) 1.65270 0.222851
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.66044 0.736927 0.368464 0.929642i \(-0.379884\pi\)
0.368464 + 0.929642i \(0.379884\pi\)
\(60\) 0 0
\(61\) 9.99319 1.27950 0.639749 0.768584i \(-0.279038\pi\)
0.639749 + 0.768584i \(0.279038\pi\)
\(62\) 0 0
\(63\) −2.53209 −0.319013
\(64\) 0 0
\(65\) −0.652704 −0.0809579
\(66\) 0 0
\(67\) 10.5963 1.29454 0.647270 0.762261i \(-0.275911\pi\)
0.647270 + 0.762261i \(0.275911\pi\)
\(68\) 0 0
\(69\) −11.4757 −1.38151
\(70\) 0 0
\(71\) 11.4953 1.36424 0.682118 0.731242i \(-0.261059\pi\)
0.682118 + 0.731242i \(0.261059\pi\)
\(72\) 0 0
\(73\) −14.6186 −1.71097 −0.855486 0.517826i \(-0.826742\pi\)
−0.855486 + 0.517826i \(0.826742\pi\)
\(74\) 0 0
\(75\) −9.17024 −1.05889
\(76\) 0 0
\(77\) −22.6459 −2.58074
\(78\) 0 0
\(79\) 2.36184 0.265728 0.132864 0.991134i \(-0.457583\pi\)
0.132864 + 0.991134i \(0.457583\pi\)
\(80\) 0 0
\(81\) −10.3131 −1.14591
\(82\) 0 0
\(83\) −11.5371 −1.26637 −0.633183 0.774002i \(-0.718252\pi\)
−0.633183 + 0.774002i \(0.718252\pi\)
\(84\) 0 0
\(85\) 0.532089 0.0577131
\(86\) 0 0
\(87\) −3.73143 −0.400051
\(88\) 0 0
\(89\) 5.63816 0.597643 0.298822 0.954309i \(-0.403406\pi\)
0.298822 + 0.954309i \(0.403406\pi\)
\(90\) 0 0
\(91\) 8.94356 0.937540
\(92\) 0 0
\(93\) −6.33275 −0.656675
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.66044 0.777800 0.388900 0.921280i \(-0.372855\pi\)
0.388900 + 0.921280i \(0.372855\pi\)
\(98\) 0 0
\(99\) 2.53209 0.254485
\(100\) 0 0
\(101\) −4.49020 −0.446792 −0.223396 0.974728i \(-0.571714\pi\)
−0.223396 + 0.974728i \(0.571714\pi\)
\(102\) 0 0
\(103\) −15.0155 −1.47952 −0.739760 0.672871i \(-0.765061\pi\)
−0.739760 + 0.672871i \(0.765061\pi\)
\(104\) 0 0
\(105\) −3.10607 −0.303121
\(106\) 0 0
\(107\) −10.8871 −1.05250 −0.526249 0.850330i \(-0.676402\pi\)
−0.526249 + 0.850330i \(0.676402\pi\)
\(108\) 0 0
\(109\) −7.65270 −0.732996 −0.366498 0.930419i \(-0.619443\pi\)
−0.366498 + 0.930419i \(0.619443\pi\)
\(110\) 0 0
\(111\) −6.36959 −0.604574
\(112\) 0 0
\(113\) 0.128356 0.0120747 0.00603734 0.999982i \(-0.498078\pi\)
0.00603734 + 0.999982i \(0.498078\pi\)
\(114\) 0 0
\(115\) −2.12061 −0.197748
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) −7.29086 −0.668352
\(120\) 0 0
\(121\) 11.6459 1.05872
\(122\) 0 0
\(123\) −8.43882 −0.760902
\(124\) 0 0
\(125\) −3.43107 −0.306885
\(126\) 0 0
\(127\) 19.2841 1.71118 0.855591 0.517652i \(-0.173194\pi\)
0.855591 + 0.517652i \(0.173194\pi\)
\(128\) 0 0
\(129\) 3.95811 0.348492
\(130\) 0 0
\(131\) −17.6313 −1.54046 −0.770229 0.637767i \(-0.779858\pi\)
−0.770229 + 0.637767i \(0.779858\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.61081 −0.138637
\(136\) 0 0
\(137\) −19.6527 −1.67904 −0.839522 0.543326i \(-0.817165\pi\)
−0.839522 + 0.543326i \(0.817165\pi\)
\(138\) 0 0
\(139\) −10.3618 −0.878880 −0.439440 0.898272i \(-0.644823\pi\)
−0.439440 + 0.898272i \(0.644823\pi\)
\(140\) 0 0
\(141\) −9.24897 −0.778904
\(142\) 0 0
\(143\) −8.94356 −0.747898
\(144\) 0 0
\(145\) −0.689540 −0.0572632
\(146\) 0 0
\(147\) 29.4047 2.42526
\(148\) 0 0
\(149\) −0.00774079 −0.000634150 0 −0.000317075 1.00000i \(-0.500101\pi\)
−0.000317075 1.00000i \(0.500101\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 0.815207 0.0659056
\(154\) 0 0
\(155\) −1.17024 −0.0939963
\(156\) 0 0
\(157\) 5.73648 0.457821 0.228911 0.973447i \(-0.426484\pi\)
0.228911 + 0.973447i \(0.426484\pi\)
\(158\) 0 0
\(159\) −23.6040 −1.87192
\(160\) 0 0
\(161\) 29.0574 2.29004
\(162\) 0 0
\(163\) −2.59121 −0.202960 −0.101480 0.994838i \(-0.532358\pi\)
−0.101480 + 0.994838i \(0.532358\pi\)
\(164\) 0 0
\(165\) 3.10607 0.241807
\(166\) 0 0
\(167\) 18.1506 1.40454 0.702270 0.711911i \(-0.252170\pi\)
0.702270 + 0.711911i \(0.252170\pi\)
\(168\) 0 0
\(169\) −9.46791 −0.728301
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.07873 −0.690243 −0.345121 0.938558i \(-0.612162\pi\)
−0.345121 + 0.938558i \(0.612162\pi\)
\(174\) 0 0
\(175\) 23.2199 1.75526
\(176\) 0 0
\(177\) 10.6382 0.799613
\(178\) 0 0
\(179\) 6.63041 0.495580 0.247790 0.968814i \(-0.420296\pi\)
0.247790 + 0.968814i \(0.420296\pi\)
\(180\) 0 0
\(181\) −5.07873 −0.377499 −0.188749 0.982025i \(-0.560443\pi\)
−0.188749 + 0.982025i \(0.560443\pi\)
\(182\) 0 0
\(183\) 18.7811 1.38834
\(184\) 0 0
\(185\) −1.17705 −0.0865386
\(186\) 0 0
\(187\) 7.29086 0.533160
\(188\) 0 0
\(189\) 22.0719 1.60550
\(190\) 0 0
\(191\) 8.90673 0.644468 0.322234 0.946660i \(-0.395566\pi\)
0.322234 + 0.946660i \(0.395566\pi\)
\(192\) 0 0
\(193\) 19.2841 1.38810 0.694048 0.719929i \(-0.255825\pi\)
0.694048 + 0.719929i \(0.255825\pi\)
\(194\) 0 0
\(195\) −1.22668 −0.0878445
\(196\) 0 0
\(197\) −17.9067 −1.27580 −0.637901 0.770119i \(-0.720197\pi\)
−0.637901 + 0.770119i \(0.720197\pi\)
\(198\) 0 0
\(199\) 8.72462 0.618472 0.309236 0.950985i \(-0.399927\pi\)
0.309236 + 0.950985i \(0.399927\pi\)
\(200\) 0 0
\(201\) 19.9145 1.40466
\(202\) 0 0
\(203\) 9.44831 0.663141
\(204\) 0 0
\(205\) −1.55943 −0.108915
\(206\) 0 0
\(207\) −3.24897 −0.225819
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.753718 0.0518881 0.0259440 0.999663i \(-0.491741\pi\)
0.0259440 + 0.999663i \(0.491741\pi\)
\(212\) 0 0
\(213\) 21.6040 1.48028
\(214\) 0 0
\(215\) 0.731429 0.0498831
\(216\) 0 0
\(217\) 16.0351 1.08853
\(218\) 0 0
\(219\) −27.4739 −1.85651
\(220\) 0 0
\(221\) −2.87939 −0.193688
\(222\) 0 0
\(223\) −4.76146 −0.318851 −0.159425 0.987210i \(-0.550964\pi\)
−0.159425 + 0.987210i \(0.550964\pi\)
\(224\) 0 0
\(225\) −2.59627 −0.173084
\(226\) 0 0
\(227\) 28.4243 1.88658 0.943292 0.331963i \(-0.107711\pi\)
0.943292 + 0.331963i \(0.107711\pi\)
\(228\) 0 0
\(229\) −15.6459 −1.03391 −0.516955 0.856013i \(-0.672935\pi\)
−0.516955 + 0.856013i \(0.672935\pi\)
\(230\) 0 0
\(231\) −42.5604 −2.80027
\(232\) 0 0
\(233\) 0.347296 0.0227521 0.0113761 0.999935i \(-0.496379\pi\)
0.0113761 + 0.999935i \(0.496379\pi\)
\(234\) 0 0
\(235\) −1.70914 −0.111492
\(236\) 0 0
\(237\) 4.43882 0.288332
\(238\) 0 0
\(239\) 6.40467 0.414283 0.207142 0.978311i \(-0.433584\pi\)
0.207142 + 0.978311i \(0.433584\pi\)
\(240\) 0 0
\(241\) 16.4165 1.05748 0.528741 0.848783i \(-0.322664\pi\)
0.528741 + 0.848783i \(0.322664\pi\)
\(242\) 0 0
\(243\) −5.46791 −0.350767
\(244\) 0 0
\(245\) 5.43376 0.347150
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −21.6827 −1.37409
\(250\) 0 0
\(251\) 0.672304 0.0424355 0.0212177 0.999775i \(-0.493246\pi\)
0.0212177 + 0.999775i \(0.493246\pi\)
\(252\) 0 0
\(253\) −29.0574 −1.82682
\(254\) 0 0
\(255\) 1.00000 0.0626224
\(256\) 0 0
\(257\) −9.33544 −0.582329 −0.291164 0.956673i \(-0.594043\pi\)
−0.291164 + 0.956673i \(0.594043\pi\)
\(258\) 0 0
\(259\) 16.1284 1.00217
\(260\) 0 0
\(261\) −1.05644 −0.0653918
\(262\) 0 0
\(263\) 11.3577 0.700347 0.350174 0.936685i \(-0.386123\pi\)
0.350174 + 0.936685i \(0.386123\pi\)
\(264\) 0 0
\(265\) −4.36184 −0.267946
\(266\) 0 0
\(267\) 10.5963 0.648481
\(268\) 0 0
\(269\) 18.5449 1.13070 0.565351 0.824851i \(-0.308741\pi\)
0.565351 + 0.824851i \(0.308741\pi\)
\(270\) 0 0
\(271\) 21.4561 1.30336 0.651681 0.758493i \(-0.274064\pi\)
0.651681 + 0.758493i \(0.274064\pi\)
\(272\) 0 0
\(273\) 16.8084 1.01729
\(274\) 0 0
\(275\) −23.2199 −1.40021
\(276\) 0 0
\(277\) −16.0351 −0.963455 −0.481727 0.876321i \(-0.659990\pi\)
−0.481727 + 0.876321i \(0.659990\pi\)
\(278\) 0 0
\(279\) −1.79292 −0.107339
\(280\) 0 0
\(281\) 18.7324 1.11748 0.558740 0.829343i \(-0.311285\pi\)
0.558740 + 0.829343i \(0.311285\pi\)
\(282\) 0 0
\(283\) 7.04963 0.419057 0.209528 0.977803i \(-0.432807\pi\)
0.209528 + 0.977803i \(0.432807\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 21.3678 1.26130
\(288\) 0 0
\(289\) −14.6527 −0.861924
\(290\) 0 0
\(291\) 14.3969 0.843963
\(292\) 0 0
\(293\) −8.26083 −0.482603 −0.241301 0.970450i \(-0.577574\pi\)
−0.241301 + 0.970450i \(0.577574\pi\)
\(294\) 0 0
\(295\) 1.96585 0.114456
\(296\) 0 0
\(297\) −22.0719 −1.28074
\(298\) 0 0
\(299\) 11.4757 0.663654
\(300\) 0 0
\(301\) −10.0223 −0.577675
\(302\) 0 0
\(303\) −8.43882 −0.484797
\(304\) 0 0
\(305\) 3.47060 0.198726
\(306\) 0 0
\(307\) −4.73143 −0.270037 −0.135018 0.990843i \(-0.543109\pi\)
−0.135018 + 0.990843i \(0.543109\pi\)
\(308\) 0 0
\(309\) −28.2199 −1.60537
\(310\) 0 0
\(311\) 11.2412 0.637432 0.318716 0.947850i \(-0.396748\pi\)
0.318716 + 0.947850i \(0.396748\pi\)
\(312\) 0 0
\(313\) 6.92127 0.391214 0.195607 0.980682i \(-0.437332\pi\)
0.195607 + 0.980682i \(0.437332\pi\)
\(314\) 0 0
\(315\) −0.879385 −0.0495477
\(316\) 0 0
\(317\) −14.6186 −0.821060 −0.410530 0.911847i \(-0.634656\pi\)
−0.410530 + 0.911847i \(0.634656\pi\)
\(318\) 0 0
\(319\) −9.44831 −0.529004
\(320\) 0 0
\(321\) −20.4611 −1.14203
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 9.17024 0.508674
\(326\) 0 0
\(327\) −14.3824 −0.795347
\(328\) 0 0
\(329\) 23.4192 1.29114
\(330\) 0 0
\(331\) −3.66550 −0.201474 −0.100737 0.994913i \(-0.532120\pi\)
−0.100737 + 0.994913i \(0.532120\pi\)
\(332\) 0 0
\(333\) −1.80335 −0.0988229
\(334\) 0 0
\(335\) 3.68004 0.201062
\(336\) 0 0
\(337\) −3.33780 −0.181822 −0.0909108 0.995859i \(-0.528978\pi\)
−0.0909108 + 0.995859i \(0.528978\pi\)
\(338\) 0 0
\(339\) 0.241230 0.0131018
\(340\) 0 0
\(341\) −16.0351 −0.868348
\(342\) 0 0
\(343\) −41.1438 −2.22156
\(344\) 0 0
\(345\) −3.98545 −0.214570
\(346\) 0 0
\(347\) 8.97359 0.481728 0.240864 0.970559i \(-0.422569\pi\)
0.240864 + 0.970559i \(0.422569\pi\)
\(348\) 0 0
\(349\) 11.0000 0.588817 0.294408 0.955680i \(-0.404877\pi\)
0.294408 + 0.955680i \(0.404877\pi\)
\(350\) 0 0
\(351\) 8.71688 0.465273
\(352\) 0 0
\(353\) −23.5526 −1.25358 −0.626790 0.779188i \(-0.715632\pi\)
−0.626790 + 0.779188i \(0.715632\pi\)
\(354\) 0 0
\(355\) 3.99226 0.211887
\(356\) 0 0
\(357\) −13.7023 −0.725204
\(358\) 0 0
\(359\) 23.2172 1.22536 0.612678 0.790333i \(-0.290092\pi\)
0.612678 + 0.790333i \(0.290092\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 21.8871 1.14878
\(364\) 0 0
\(365\) −5.07697 −0.265741
\(366\) 0 0
\(367\) 8.98814 0.469177 0.234589 0.972095i \(-0.424626\pi\)
0.234589 + 0.972095i \(0.424626\pi\)
\(368\) 0 0
\(369\) −2.38919 −0.124376
\(370\) 0 0
\(371\) 59.7674 3.10297
\(372\) 0 0
\(373\) 20.6459 1.06900 0.534502 0.845167i \(-0.320499\pi\)
0.534502 + 0.845167i \(0.320499\pi\)
\(374\) 0 0
\(375\) −6.44831 −0.332989
\(376\) 0 0
\(377\) 3.73143 0.192178
\(378\) 0 0
\(379\) 0.650015 0.0333890 0.0166945 0.999861i \(-0.494686\pi\)
0.0166945 + 0.999861i \(0.494686\pi\)
\(380\) 0 0
\(381\) 36.2422 1.85674
\(382\) 0 0
\(383\) 18.6186 0.951364 0.475682 0.879617i \(-0.342201\pi\)
0.475682 + 0.879617i \(0.342201\pi\)
\(384\) 0 0
\(385\) −7.86484 −0.400829
\(386\) 0 0
\(387\) 1.12061 0.0569640
\(388\) 0 0
\(389\) 0.625362 0.0317071 0.0158536 0.999874i \(-0.494953\pi\)
0.0158536 + 0.999874i \(0.494953\pi\)
\(390\) 0 0
\(391\) −9.35504 −0.473105
\(392\) 0 0
\(393\) −33.1361 −1.67149
\(394\) 0 0
\(395\) 0.820260 0.0412718
\(396\) 0 0
\(397\) −7.85710 −0.394336 −0.197168 0.980370i \(-0.563175\pi\)
−0.197168 + 0.980370i \(0.563175\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −10.4097 −0.519837 −0.259918 0.965631i \(-0.583696\pi\)
−0.259918 + 0.965631i \(0.583696\pi\)
\(402\) 0 0
\(403\) 6.33275 0.315457
\(404\) 0 0
\(405\) −3.58172 −0.177977
\(406\) 0 0
\(407\) −16.1284 −0.799453
\(408\) 0 0
\(409\) 14.6955 0.726647 0.363324 0.931663i \(-0.381642\pi\)
0.363324 + 0.931663i \(0.381642\pi\)
\(410\) 0 0
\(411\) −36.9350 −1.82187
\(412\) 0 0
\(413\) −26.9368 −1.32547
\(414\) 0 0
\(415\) −4.00681 −0.196686
\(416\) 0 0
\(417\) −19.4739 −0.953641
\(418\) 0 0
\(419\) 7.03508 0.343686 0.171843 0.985124i \(-0.445028\pi\)
0.171843 + 0.985124i \(0.445028\pi\)
\(420\) 0 0
\(421\) 35.5408 1.73215 0.866075 0.499913i \(-0.166635\pi\)
0.866075 + 0.499913i \(0.166635\pi\)
\(422\) 0 0
\(423\) −2.61856 −0.127319
\(424\) 0 0
\(425\) −7.47565 −0.362622
\(426\) 0 0
\(427\) −47.5553 −2.30136
\(428\) 0 0
\(429\) −16.8084 −0.811517
\(430\) 0 0
\(431\) 20.5057 0.987724 0.493862 0.869540i \(-0.335585\pi\)
0.493862 + 0.869540i \(0.335585\pi\)
\(432\) 0 0
\(433\) −20.1661 −0.969122 −0.484561 0.874757i \(-0.661021\pi\)
−0.484561 + 0.874757i \(0.661021\pi\)
\(434\) 0 0
\(435\) −1.29591 −0.0621342
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 3.10782 0.148328 0.0741641 0.997246i \(-0.476371\pi\)
0.0741641 + 0.997246i \(0.476371\pi\)
\(440\) 0 0
\(441\) 8.32501 0.396429
\(442\) 0 0
\(443\) −8.74691 −0.415578 −0.207789 0.978174i \(-0.566627\pi\)
−0.207789 + 0.978174i \(0.566627\pi\)
\(444\) 0 0
\(445\) 1.95811 0.0928234
\(446\) 0 0
\(447\) −0.0145479 −0.000688093 0
\(448\) 0 0
\(449\) −38.8135 −1.83172 −0.915860 0.401498i \(-0.868490\pi\)
−0.915860 + 0.401498i \(0.868490\pi\)
\(450\) 0 0
\(451\) −21.3678 −1.00617
\(452\) 0 0
\(453\) −30.0702 −1.41282
\(454\) 0 0
\(455\) 3.10607 0.145615
\(456\) 0 0
\(457\) 13.0933 0.612478 0.306239 0.951955i \(-0.400929\pi\)
0.306239 + 0.951955i \(0.400929\pi\)
\(458\) 0 0
\(459\) −7.10607 −0.331683
\(460\) 0 0
\(461\) −11.7419 −0.546873 −0.273436 0.961890i \(-0.588160\pi\)
−0.273436 + 0.961890i \(0.588160\pi\)
\(462\) 0 0
\(463\) −15.1438 −0.703794 −0.351897 0.936039i \(-0.614463\pi\)
−0.351897 + 0.936039i \(0.614463\pi\)
\(464\) 0 0
\(465\) −2.19934 −0.101992
\(466\) 0 0
\(467\) 31.3696 1.45161 0.725806 0.687900i \(-0.241467\pi\)
0.725806 + 0.687900i \(0.241467\pi\)
\(468\) 0 0
\(469\) −50.4252 −2.32842
\(470\) 0 0
\(471\) 10.7811 0.496765
\(472\) 0 0
\(473\) 10.0223 0.460825
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −6.68273 −0.305981
\(478\) 0 0
\(479\) −15.2695 −0.697681 −0.348841 0.937182i \(-0.613425\pi\)
−0.348841 + 0.937182i \(0.613425\pi\)
\(480\) 0 0
\(481\) 6.36959 0.290428
\(482\) 0 0
\(483\) 54.6100 2.48484
\(484\) 0 0
\(485\) 2.66044 0.120805
\(486\) 0 0
\(487\) 37.0856 1.68051 0.840256 0.542191i \(-0.182405\pi\)
0.840256 + 0.542191i \(0.182405\pi\)
\(488\) 0 0
\(489\) −4.86989 −0.220224
\(490\) 0 0
\(491\) 28.1753 1.27153 0.635767 0.771881i \(-0.280684\pi\)
0.635767 + 0.771881i \(0.280684\pi\)
\(492\) 0 0
\(493\) −3.04189 −0.137000
\(494\) 0 0
\(495\) 0.879385 0.0395254
\(496\) 0 0
\(497\) −54.7033 −2.45378
\(498\) 0 0
\(499\) 12.9736 0.580778 0.290389 0.956909i \(-0.406215\pi\)
0.290389 + 0.956909i \(0.406215\pi\)
\(500\) 0 0
\(501\) 34.1121 1.52401
\(502\) 0 0
\(503\) −10.8821 −0.485208 −0.242604 0.970125i \(-0.578002\pi\)
−0.242604 + 0.970125i \(0.578002\pi\)
\(504\) 0 0
\(505\) −1.55943 −0.0693937
\(506\) 0 0
\(507\) −17.7939 −0.790253
\(508\) 0 0
\(509\) −11.4851 −0.509070 −0.254535 0.967064i \(-0.581922\pi\)
−0.254535 + 0.967064i \(0.581922\pi\)
\(510\) 0 0
\(511\) 69.5663 3.07743
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.21482 −0.229793
\(516\) 0 0
\(517\) −23.4192 −1.02998
\(518\) 0 0
\(519\) −17.0624 −0.748957
\(520\) 0 0
\(521\) −6.87164 −0.301052 −0.150526 0.988606i \(-0.548097\pi\)
−0.150526 + 0.988606i \(0.548097\pi\)
\(522\) 0 0
\(523\) −12.4388 −0.543911 −0.271956 0.962310i \(-0.587670\pi\)
−0.271956 + 0.962310i \(0.587670\pi\)
\(524\) 0 0
\(525\) 43.6391 1.90457
\(526\) 0 0
\(527\) −5.16250 −0.224882
\(528\) 0 0
\(529\) 14.2841 0.621046
\(530\) 0 0
\(531\) 3.01186 0.130704
\(532\) 0 0
\(533\) 8.43882 0.365526
\(534\) 0 0
\(535\) −3.78106 −0.163469
\(536\) 0 0
\(537\) 12.4611 0.537736
\(538\) 0 0
\(539\) 74.4552 3.20701
\(540\) 0 0
\(541\) −12.3705 −0.531850 −0.265925 0.963994i \(-0.585677\pi\)
−0.265925 + 0.963994i \(0.585677\pi\)
\(542\) 0 0
\(543\) −9.54488 −0.409610
\(544\) 0 0
\(545\) −2.65776 −0.113846
\(546\) 0 0
\(547\) −22.9344 −0.980604 −0.490302 0.871553i \(-0.663113\pi\)
−0.490302 + 0.871553i \(0.663113\pi\)
\(548\) 0 0
\(549\) 5.31727 0.226935
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −11.2395 −0.477951
\(554\) 0 0
\(555\) −2.21213 −0.0938998
\(556\) 0 0
\(557\) 21.3233 0.903495 0.451748 0.892146i \(-0.350801\pi\)
0.451748 + 0.892146i \(0.350801\pi\)
\(558\) 0 0
\(559\) −3.95811 −0.167410
\(560\) 0 0
\(561\) 13.7023 0.578513
\(562\) 0 0
\(563\) 18.7588 0.790588 0.395294 0.918555i \(-0.370643\pi\)
0.395294 + 0.918555i \(0.370643\pi\)
\(564\) 0 0
\(565\) 0.0445774 0.00187539
\(566\) 0 0
\(567\) 49.0779 2.06108
\(568\) 0 0
\(569\) 6.16756 0.258557 0.129279 0.991608i \(-0.458734\pi\)
0.129279 + 0.991608i \(0.458734\pi\)
\(570\) 0 0
\(571\) 22.2175 0.929774 0.464887 0.885370i \(-0.346095\pi\)
0.464887 + 0.885370i \(0.346095\pi\)
\(572\) 0 0
\(573\) 16.7392 0.699289
\(574\) 0 0
\(575\) 29.7939 1.24249
\(576\) 0 0
\(577\) −37.7701 −1.57239 −0.786196 0.617978i \(-0.787952\pi\)
−0.786196 + 0.617978i \(0.787952\pi\)
\(578\) 0 0
\(579\) 36.2422 1.50617
\(580\) 0 0
\(581\) 54.9026 2.27774
\(582\) 0 0
\(583\) −59.7674 −2.47531
\(584\) 0 0
\(585\) −0.347296 −0.0143589
\(586\) 0 0
\(587\) −4.30035 −0.177495 −0.0887473 0.996054i \(-0.528286\pi\)
−0.0887473 + 0.996054i \(0.528286\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −33.6536 −1.38433
\(592\) 0 0
\(593\) 7.44057 0.305548 0.152774 0.988261i \(-0.451179\pi\)
0.152774 + 0.988261i \(0.451179\pi\)
\(594\) 0 0
\(595\) −2.53209 −0.103806
\(596\) 0 0
\(597\) 16.3969 0.671082
\(598\) 0 0
\(599\) 0.635467 0.0259645 0.0129822 0.999916i \(-0.495868\pi\)
0.0129822 + 0.999916i \(0.495868\pi\)
\(600\) 0 0
\(601\) −2.64590 −0.107928 −0.0539642 0.998543i \(-0.517186\pi\)
−0.0539642 + 0.998543i \(0.517186\pi\)
\(602\) 0 0
\(603\) 5.63816 0.229603
\(604\) 0 0
\(605\) 4.04458 0.164435
\(606\) 0 0
\(607\) 18.3851 0.746227 0.373113 0.927786i \(-0.378290\pi\)
0.373113 + 0.927786i \(0.378290\pi\)
\(608\) 0 0
\(609\) 17.7570 0.719551
\(610\) 0 0
\(611\) 9.24897 0.374173
\(612\) 0 0
\(613\) 18.0823 0.730339 0.365170 0.930941i \(-0.381011\pi\)
0.365170 + 0.930941i \(0.381011\pi\)
\(614\) 0 0
\(615\) −2.93077 −0.118180
\(616\) 0 0
\(617\) 18.6064 0.749064 0.374532 0.927214i \(-0.377803\pi\)
0.374532 + 0.927214i \(0.377803\pi\)
\(618\) 0 0
\(619\) −10.8479 −0.436015 −0.218007 0.975947i \(-0.569956\pi\)
−0.218007 + 0.975947i \(0.569956\pi\)
\(620\) 0 0
\(621\) 28.3209 1.13648
\(622\) 0 0
\(623\) −26.8307 −1.07495
\(624\) 0 0
\(625\) 23.2053 0.928213
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.19253 −0.207040
\(630\) 0 0
\(631\) −15.1019 −0.601199 −0.300600 0.953750i \(-0.597187\pi\)
−0.300600 + 0.953750i \(0.597187\pi\)
\(632\) 0 0
\(633\) 1.41653 0.0563019
\(634\) 0 0
\(635\) 6.69728 0.265773
\(636\) 0 0
\(637\) −29.4047 −1.16506
\(638\) 0 0
\(639\) 6.11650 0.241965
\(640\) 0 0
\(641\) −46.2945 −1.82852 −0.914261 0.405126i \(-0.867228\pi\)
−0.914261 + 0.405126i \(0.867228\pi\)
\(642\) 0 0
\(643\) −13.5800 −0.535542 −0.267771 0.963483i \(-0.586287\pi\)
−0.267771 + 0.963483i \(0.586287\pi\)
\(644\) 0 0
\(645\) 1.37464 0.0541263
\(646\) 0 0
\(647\) 33.8135 1.32934 0.664672 0.747135i \(-0.268571\pi\)
0.664672 + 0.747135i \(0.268571\pi\)
\(648\) 0 0
\(649\) 26.9368 1.05736
\(650\) 0 0
\(651\) 30.1361 1.18113
\(652\) 0 0
\(653\) 6.74329 0.263885 0.131943 0.991257i \(-0.457879\pi\)
0.131943 + 0.991257i \(0.457879\pi\)
\(654\) 0 0
\(655\) −6.12330 −0.239257
\(656\) 0 0
\(657\) −7.77837 −0.303463
\(658\) 0 0
\(659\) 0.474718 0.0184924 0.00924620 0.999957i \(-0.497057\pi\)
0.00924620 + 0.999957i \(0.497057\pi\)
\(660\) 0 0
\(661\) 3.86484 0.150325 0.0751624 0.997171i \(-0.476052\pi\)
0.0751624 + 0.997171i \(0.476052\pi\)
\(662\) 0 0
\(663\) −5.41147 −0.210164
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12.1233 0.469416
\(668\) 0 0
\(669\) −8.94862 −0.345973
\(670\) 0 0
\(671\) 47.5553 1.83585
\(672\) 0 0
\(673\) 4.22163 0.162732 0.0813659 0.996684i \(-0.474072\pi\)
0.0813659 + 0.996684i \(0.474072\pi\)
\(674\) 0 0
\(675\) 22.6313 0.871081
\(676\) 0 0
\(677\) 18.1242 0.696571 0.348286 0.937389i \(-0.386764\pi\)
0.348286 + 0.937389i \(0.386764\pi\)
\(678\) 0 0
\(679\) −36.4543 −1.39899
\(680\) 0 0
\(681\) 53.4201 2.04706
\(682\) 0 0
\(683\) 27.2608 1.04311 0.521553 0.853219i \(-0.325353\pi\)
0.521553 + 0.853219i \(0.325353\pi\)
\(684\) 0 0
\(685\) −6.82531 −0.260782
\(686\) 0 0
\(687\) −29.4047 −1.12186
\(688\) 0 0
\(689\) 23.6040 0.899241
\(690\) 0 0
\(691\) −26.2371 −0.998107 −0.499053 0.866571i \(-0.666319\pi\)
−0.499053 + 0.866571i \(0.666319\pi\)
\(692\) 0 0
\(693\) −12.0496 −0.457728
\(694\) 0 0
\(695\) −3.59863 −0.136504
\(696\) 0 0
\(697\) −6.87939 −0.260575
\(698\) 0 0
\(699\) 0.652704 0.0246875
\(700\) 0 0
\(701\) 24.5672 0.927889 0.463945 0.885864i \(-0.346434\pi\)
0.463945 + 0.885864i \(0.346434\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −3.21213 −0.120976
\(706\) 0 0
\(707\) 21.3678 0.803620
\(708\) 0 0
\(709\) −10.9537 −0.411374 −0.205687 0.978618i \(-0.565943\pi\)
−0.205687 + 0.978618i \(0.565943\pi\)
\(710\) 0 0
\(711\) 1.25671 0.0471303
\(712\) 0 0
\(713\) 20.5749 0.770536
\(714\) 0 0
\(715\) −3.10607 −0.116160
\(716\) 0 0
\(717\) 12.0368 0.449524
\(718\) 0 0
\(719\) −42.5449 −1.58666 −0.793328 0.608794i \(-0.791654\pi\)
−0.793328 + 0.608794i \(0.791654\pi\)
\(720\) 0 0
\(721\) 71.4552 2.66113
\(722\) 0 0
\(723\) 30.8530 1.14743
\(724\) 0 0
\(725\) 9.68779 0.359795
\(726\) 0 0
\(727\) −39.5398 −1.46645 −0.733226 0.679986i \(-0.761986\pi\)
−0.733226 + 0.679986i \(0.761986\pi\)
\(728\) 0 0
\(729\) 20.6631 0.765301
\(730\) 0 0
\(731\) 3.22668 0.119343
\(732\) 0 0
\(733\) −44.2918 −1.63595 −0.817977 0.575250i \(-0.804905\pi\)
−0.817977 + 0.575250i \(0.804905\pi\)
\(734\) 0 0
\(735\) 10.2121 0.376680
\(736\) 0 0
\(737\) 50.4252 1.85744
\(738\) 0 0
\(739\) −53.7989 −1.97902 −0.989512 0.144448i \(-0.953859\pi\)
−0.989512 + 0.144448i \(0.953859\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.8179 −0.433557 −0.216778 0.976221i \(-0.569555\pi\)
−0.216778 + 0.976221i \(0.569555\pi\)
\(744\) 0 0
\(745\) −0.00268835 −9.84934e−5 0
\(746\) 0 0
\(747\) −6.13878 −0.224606
\(748\) 0 0
\(749\) 51.8093 1.89307
\(750\) 0 0
\(751\) −37.6604 −1.37425 −0.687125 0.726540i \(-0.741127\pi\)
−0.687125 + 0.726540i \(0.741127\pi\)
\(752\) 0 0
\(753\) 1.26352 0.0460452
\(754\) 0 0
\(755\) −5.55674 −0.202231
\(756\) 0 0
\(757\) 7.59896 0.276189 0.138094 0.990419i \(-0.455902\pi\)
0.138094 + 0.990419i \(0.455902\pi\)
\(758\) 0 0
\(759\) −54.6100 −1.98222
\(760\) 0 0
\(761\) −1.51754 −0.0550108 −0.0275054 0.999622i \(-0.508756\pi\)
−0.0275054 + 0.999622i \(0.508756\pi\)
\(762\) 0 0
\(763\) 36.4175 1.31840
\(764\) 0 0
\(765\) 0.283119 0.0102362
\(766\) 0 0
\(767\) −10.6382 −0.384122
\(768\) 0 0
\(769\) −17.0787 −0.615875 −0.307937 0.951407i \(-0.599639\pi\)
−0.307937 + 0.951407i \(0.599639\pi\)
\(770\) 0 0
\(771\) −17.5449 −0.631863
\(772\) 0 0
\(773\) 0.731429 0.0263077 0.0131538 0.999913i \(-0.495813\pi\)
0.0131538 + 0.999913i \(0.495813\pi\)
\(774\) 0 0
\(775\) 16.4415 0.590596
\(776\) 0 0
\(777\) 30.3114 1.08742
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 54.7033 1.95744
\(782\) 0 0
\(783\) 9.20884 0.329097
\(784\) 0 0
\(785\) 1.99226 0.0711068
\(786\) 0 0
\(787\) 24.9573 0.889631 0.444816 0.895622i \(-0.353269\pi\)
0.444816 + 0.895622i \(0.353269\pi\)
\(788\) 0 0
\(789\) 21.3455 0.759921
\(790\) 0 0
\(791\) −0.610815 −0.0217181
\(792\) 0 0
\(793\) −18.7811 −0.666935
\(794\) 0 0
\(795\) −8.19759 −0.290738
\(796\) 0 0
\(797\) −46.2877 −1.63959 −0.819797 0.572655i \(-0.805914\pi\)
−0.819797 + 0.572655i \(0.805914\pi\)
\(798\) 0 0
\(799\) −7.53983 −0.266740
\(800\) 0 0
\(801\) 3.00000 0.106000
\(802\) 0 0
\(803\) −69.5663 −2.45494
\(804\) 0 0
\(805\) 10.0915 0.355679
\(806\) 0 0
\(807\) 34.8530 1.22688
\(808\) 0 0
\(809\) −52.3809 −1.84162 −0.920808 0.390016i \(-0.872469\pi\)
−0.920808 + 0.390016i \(0.872469\pi\)
\(810\) 0 0
\(811\) −47.8711 −1.68098 −0.840492 0.541824i \(-0.817734\pi\)
−0.840492 + 0.541824i \(0.817734\pi\)
\(812\) 0 0
\(813\) 40.3242 1.41423
\(814\) 0 0
\(815\) −0.899919 −0.0315228
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 4.75877 0.166285
\(820\) 0 0
\(821\) −33.8120 −1.18005 −0.590024 0.807386i \(-0.700882\pi\)
−0.590024 + 0.807386i \(0.700882\pi\)
\(822\) 0 0
\(823\) 6.04221 0.210618 0.105309 0.994440i \(-0.466417\pi\)
0.105309 + 0.994440i \(0.466417\pi\)
\(824\) 0 0
\(825\) −43.6391 −1.51932
\(826\) 0 0
\(827\) −24.3604 −0.847095 −0.423547 0.905874i \(-0.639215\pi\)
−0.423547 + 0.905874i \(0.639215\pi\)
\(828\) 0 0
\(829\) 23.9067 0.830315 0.415157 0.909750i \(-0.363726\pi\)
0.415157 + 0.909750i \(0.363726\pi\)
\(830\) 0 0
\(831\) −30.1361 −1.04541
\(832\) 0 0
\(833\) 23.9709 0.830543
\(834\) 0 0
\(835\) 6.30365 0.218147
\(836\) 0 0
\(837\) 15.6287 0.540206
\(838\) 0 0
\(839\) −15.8449 −0.547027 −0.273514 0.961868i \(-0.588186\pi\)
−0.273514 + 0.961868i \(0.588186\pi\)
\(840\) 0 0
\(841\) −25.0580 −0.864068
\(842\) 0 0
\(843\) 35.2053 1.21254
\(844\) 0 0
\(845\) −3.28817 −0.113117
\(846\) 0 0
\(847\) −55.4201 −1.90426
\(848\) 0 0
\(849\) 13.2490 0.454703
\(850\) 0 0
\(851\) 20.6946 0.709402
\(852\) 0 0
\(853\) 1.21719 0.0416757 0.0208378 0.999783i \(-0.493367\pi\)
0.0208378 + 0.999783i \(0.493367\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.3806 1.58433 0.792166 0.610306i \(-0.208953\pi\)
0.792166 + 0.610306i \(0.208953\pi\)
\(858\) 0 0
\(859\) 15.3141 0.522510 0.261255 0.965270i \(-0.415864\pi\)
0.261255 + 0.965270i \(0.415864\pi\)
\(860\) 0 0
\(861\) 40.1584 1.36859
\(862\) 0 0
\(863\) −45.7357 −1.55686 −0.778430 0.627731i \(-0.783984\pi\)
−0.778430 + 0.627731i \(0.783984\pi\)
\(864\) 0 0
\(865\) −3.15301 −0.107205
\(866\) 0 0
\(867\) −27.5381 −0.935242
\(868\) 0 0
\(869\) 11.2395 0.381273
\(870\) 0 0
\(871\) −19.9145 −0.674776
\(872\) 0 0
\(873\) 4.07604 0.137953
\(874\) 0 0
\(875\) 16.3277 0.551977
\(876\) 0 0
\(877\) −33.1712 −1.12011 −0.560056 0.828455i \(-0.689220\pi\)
−0.560056 + 0.828455i \(0.689220\pi\)
\(878\) 0 0
\(879\) −15.5253 −0.523655
\(880\) 0 0
\(881\) 43.8485 1.47729 0.738647 0.674092i \(-0.235465\pi\)
0.738647 + 0.674092i \(0.235465\pi\)
\(882\) 0 0
\(883\) −49.8590 −1.67789 −0.838944 0.544218i \(-0.816826\pi\)
−0.838944 + 0.544218i \(0.816826\pi\)
\(884\) 0 0
\(885\) 3.69459 0.124192
\(886\) 0 0
\(887\) 34.0934 1.14474 0.572372 0.819994i \(-0.306023\pi\)
0.572372 + 0.819994i \(0.306023\pi\)
\(888\) 0 0
\(889\) −91.7684 −3.07781
\(890\) 0 0
\(891\) −49.0779 −1.64417
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 2.30272 0.0769714
\(896\) 0 0
\(897\) 21.5672 0.720107
\(898\) 0 0
\(899\) 6.69015 0.223129
\(900\) 0 0
\(901\) −19.2422 −0.641049
\(902\) 0 0
\(903\) −18.8357 −0.626814
\(904\) 0 0
\(905\) −1.76382 −0.0586315
\(906\) 0 0
\(907\) 46.4519 1.54241 0.771206 0.636586i \(-0.219654\pi\)
0.771206 + 0.636586i \(0.219654\pi\)
\(908\) 0 0
\(909\) −2.38919 −0.0792443
\(910\) 0 0
\(911\) −19.8527 −0.657748 −0.328874 0.944374i \(-0.606669\pi\)
−0.328874 + 0.944374i \(0.606669\pi\)
\(912\) 0 0
\(913\) −54.9026 −1.81701
\(914\) 0 0
\(915\) 6.52259 0.215630
\(916\) 0 0
\(917\) 83.9035 2.77074
\(918\) 0 0
\(919\) 25.1129 0.828397 0.414199 0.910187i \(-0.364062\pi\)
0.414199 + 0.910187i \(0.364062\pi\)
\(920\) 0 0
\(921\) −8.89218 −0.293007
\(922\) 0 0
\(923\) −21.6040 −0.711105
\(924\) 0 0
\(925\) 16.5371 0.543738
\(926\) 0 0
\(927\) −7.98957 −0.262412
\(928\) 0 0
\(929\) −54.0164 −1.77222 −0.886111 0.463474i \(-0.846603\pi\)
−0.886111 + 0.463474i \(0.846603\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 21.1266 0.691654
\(934\) 0 0
\(935\) 2.53209 0.0828082
\(936\) 0 0
\(937\) −35.4361 −1.15765 −0.578824 0.815453i \(-0.696488\pi\)
−0.578824 + 0.815453i \(0.696488\pi\)
\(938\) 0 0
\(939\) 13.0077 0.424492
\(940\) 0 0
\(941\) 28.3996 0.925801 0.462900 0.886410i \(-0.346809\pi\)
0.462900 + 0.886410i \(0.346809\pi\)
\(942\) 0 0
\(943\) 27.4175 0.892835
\(944\) 0 0
\(945\) 7.66550 0.249359
\(946\) 0 0
\(947\) 41.2294 1.33977 0.669887 0.742463i \(-0.266342\pi\)
0.669887 + 0.742463i \(0.266342\pi\)
\(948\) 0 0
\(949\) 27.4739 0.891840
\(950\) 0 0
\(951\) −27.4739 −0.890902
\(952\) 0 0
\(953\) −25.3387 −0.820802 −0.410401 0.911905i \(-0.634611\pi\)
−0.410401 + 0.911905i \(0.634611\pi\)
\(954\) 0 0
\(955\) 3.09327 0.100096
\(956\) 0 0
\(957\) −17.7570 −0.574003
\(958\) 0 0
\(959\) 93.5227 3.02001
\(960\) 0 0
\(961\) −19.6459 −0.633739
\(962\) 0 0
\(963\) −5.79292 −0.186674
\(964\) 0 0
\(965\) 6.69728 0.215593
\(966\) 0 0
\(967\) −3.78693 −0.121780 −0.0608898 0.998144i \(-0.519394\pi\)
−0.0608898 + 0.998144i \(0.519394\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −9.20708 −0.295469 −0.147735 0.989027i \(-0.547198\pi\)
−0.147735 + 0.989027i \(0.547198\pi\)
\(972\) 0 0
\(973\) 49.3096 1.58079
\(974\) 0 0
\(975\) 17.2344 0.551943
\(976\) 0 0
\(977\) 50.4593 1.61434 0.807169 0.590321i \(-0.200999\pi\)
0.807169 + 0.590321i \(0.200999\pi\)
\(978\) 0 0
\(979\) 26.8307 0.857513
\(980\) 0 0
\(981\) −4.07192 −0.130006
\(982\) 0 0
\(983\) −48.6141 −1.55055 −0.775275 0.631624i \(-0.782389\pi\)
−0.775275 + 0.631624i \(0.782389\pi\)
\(984\) 0 0
\(985\) −6.21894 −0.198152
\(986\) 0 0
\(987\) 44.0137 1.40097
\(988\) 0 0
\(989\) −12.8598 −0.408917
\(990\) 0 0
\(991\) 37.1130 1.17893 0.589466 0.807793i \(-0.299338\pi\)
0.589466 + 0.807793i \(0.299338\pi\)
\(992\) 0 0
\(993\) −6.88888 −0.218612
\(994\) 0 0
\(995\) 3.03003 0.0960584
\(996\) 0 0
\(997\) −41.3354 −1.30911 −0.654553 0.756016i \(-0.727143\pi\)
−0.654553 + 0.756016i \(0.727143\pi\)
\(998\) 0 0
\(999\) 15.7196 0.497345
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.q.1.3 3
4.3 odd 2 5776.2.a.bl.1.1 3
19.4 even 9 152.2.q.a.73.1 yes 6
19.5 even 9 152.2.q.a.25.1 6
19.18 odd 2 2888.2.a.p.1.1 3
76.23 odd 18 304.2.u.d.225.1 6
76.43 odd 18 304.2.u.d.177.1 6
76.75 even 2 5776.2.a.bm.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.q.a.25.1 6 19.5 even 9
152.2.q.a.73.1 yes 6 19.4 even 9
304.2.u.d.177.1 6 76.43 odd 18
304.2.u.d.225.1 6 76.23 odd 18
2888.2.a.p.1.1 3 19.18 odd 2
2888.2.a.q.1.3 3 1.1 even 1 trivial
5776.2.a.bl.1.1 3 4.3 odd 2
5776.2.a.bm.1.3 3 76.75 even 2