Properties

Label 2888.2.a.q.1.1
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,0,0,-3,0,-3,0,3,0,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.53209\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.53209 q^{3} -1.87939 q^{5} +2.06418 q^{7} -0.652704 q^{9} -2.06418 q^{11} +1.53209 q^{13} +2.87939 q^{15} +0.347296 q^{17} -3.16250 q^{21} +2.94356 q^{23} -1.46791 q^{25} +5.59627 q^{27} +10.4757 q^{29} -5.45336 q^{31} +3.16250 q^{33} -3.87939 q^{35} +5.51754 q^{37} -2.34730 q^{39} -9.98545 q^{41} -6.94356 q^{43} +1.22668 q^{45} +5.17024 q^{47} -2.73917 q^{49} -0.532089 q^{51} +7.76651 q^{53} +3.87939 q^{55} -0.263518 q^{59} -10.6186 q^{61} -1.34730 q^{63} -2.87939 q^{65} +7.04189 q^{67} -4.50980 q^{69} -6.46110 q^{71} -15.3746 q^{73} +2.24897 q^{75} -4.26083 q^{77} +12.5963 q^{79} -6.61587 q^{81} +13.0993 q^{83} -0.652704 q^{85} -16.0496 q^{87} -4.59627 q^{89} +3.16250 q^{91} +8.35504 q^{93} +1.73648 q^{97} +1.34730 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{7} - 3 q^{9} + 3 q^{11} + 3 q^{15} - 12 q^{21} - 6 q^{23} - 9 q^{25} + 3 q^{27} + 12 q^{29} - 3 q^{31} + 12 q^{33} - 6 q^{35} - 6 q^{37} - 6 q^{39} - 12 q^{41} - 6 q^{43} - 3 q^{45} - 6 q^{47}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.53209 −0.884552 −0.442276 0.896879i \(-0.645829\pi\)
−0.442276 + 0.896879i \(0.645829\pi\)
\(4\) 0 0
\(5\) −1.87939 −0.840487 −0.420243 0.907411i \(-0.638055\pi\)
−0.420243 + 0.907411i \(0.638055\pi\)
\(6\) 0 0
\(7\) 2.06418 0.780186 0.390093 0.920775i \(-0.372443\pi\)
0.390093 + 0.920775i \(0.372443\pi\)
\(8\) 0 0
\(9\) −0.652704 −0.217568
\(10\) 0 0
\(11\) −2.06418 −0.622373 −0.311187 0.950349i \(-0.600726\pi\)
−0.311187 + 0.950349i \(0.600726\pi\)
\(12\) 0 0
\(13\) 1.53209 0.424925 0.212463 0.977169i \(-0.431852\pi\)
0.212463 + 0.977169i \(0.431852\pi\)
\(14\) 0 0
\(15\) 2.87939 0.743454
\(16\) 0 0
\(17\) 0.347296 0.0842317 0.0421159 0.999113i \(-0.486590\pi\)
0.0421159 + 0.999113i \(0.486590\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) −3.16250 −0.690115
\(22\) 0 0
\(23\) 2.94356 0.613775 0.306888 0.951746i \(-0.400712\pi\)
0.306888 + 0.951746i \(0.400712\pi\)
\(24\) 0 0
\(25\) −1.46791 −0.293582
\(26\) 0 0
\(27\) 5.59627 1.07700
\(28\) 0 0
\(29\) 10.4757 1.94528 0.972640 0.232318i \(-0.0746310\pi\)
0.972640 + 0.232318i \(0.0746310\pi\)
\(30\) 0 0
\(31\) −5.45336 −0.979453 −0.489726 0.871876i \(-0.662903\pi\)
−0.489726 + 0.871876i \(0.662903\pi\)
\(32\) 0 0
\(33\) 3.16250 0.550521
\(34\) 0 0
\(35\) −3.87939 −0.655736
\(36\) 0 0
\(37\) 5.51754 0.907078 0.453539 0.891236i \(-0.350161\pi\)
0.453539 + 0.891236i \(0.350161\pi\)
\(38\) 0 0
\(39\) −2.34730 −0.375868
\(40\) 0 0
\(41\) −9.98545 −1.55947 −0.779733 0.626112i \(-0.784645\pi\)
−0.779733 + 0.626112i \(0.784645\pi\)
\(42\) 0 0
\(43\) −6.94356 −1.05888 −0.529442 0.848346i \(-0.677599\pi\)
−0.529442 + 0.848346i \(0.677599\pi\)
\(44\) 0 0
\(45\) 1.22668 0.182863
\(46\) 0 0
\(47\) 5.17024 0.754158 0.377079 0.926181i \(-0.376929\pi\)
0.377079 + 0.926181i \(0.376929\pi\)
\(48\) 0 0
\(49\) −2.73917 −0.391310
\(50\) 0 0
\(51\) −0.532089 −0.0745073
\(52\) 0 0
\(53\) 7.76651 1.06681 0.533406 0.845859i \(-0.320912\pi\)
0.533406 + 0.845859i \(0.320912\pi\)
\(54\) 0 0
\(55\) 3.87939 0.523096
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.263518 −0.0343072 −0.0171536 0.999853i \(-0.505460\pi\)
−0.0171536 + 0.999853i \(0.505460\pi\)
\(60\) 0 0
\(61\) −10.6186 −1.35957 −0.679783 0.733413i \(-0.737926\pi\)
−0.679783 + 0.733413i \(0.737926\pi\)
\(62\) 0 0
\(63\) −1.34730 −0.169743
\(64\) 0 0
\(65\) −2.87939 −0.357144
\(66\) 0 0
\(67\) 7.04189 0.860304 0.430152 0.902757i \(-0.358460\pi\)
0.430152 + 0.902757i \(0.358460\pi\)
\(68\) 0 0
\(69\) −4.50980 −0.542916
\(70\) 0 0
\(71\) −6.46110 −0.766792 −0.383396 0.923584i \(-0.625246\pi\)
−0.383396 + 0.923584i \(0.625246\pi\)
\(72\) 0 0
\(73\) −15.3746 −1.79947 −0.899733 0.436442i \(-0.856239\pi\)
−0.899733 + 0.436442i \(0.856239\pi\)
\(74\) 0 0
\(75\) 2.24897 0.259689
\(76\) 0 0
\(77\) −4.26083 −0.485567
\(78\) 0 0
\(79\) 12.5963 1.41719 0.708595 0.705615i \(-0.249329\pi\)
0.708595 + 0.705615i \(0.249329\pi\)
\(80\) 0 0
\(81\) −6.61587 −0.735096
\(82\) 0 0
\(83\) 13.0993 1.43783 0.718915 0.695098i \(-0.244639\pi\)
0.718915 + 0.695098i \(0.244639\pi\)
\(84\) 0 0
\(85\) −0.652704 −0.0707957
\(86\) 0 0
\(87\) −16.0496 −1.72070
\(88\) 0 0
\(89\) −4.59627 −0.487203 −0.243602 0.969875i \(-0.578329\pi\)
−0.243602 + 0.969875i \(0.578329\pi\)
\(90\) 0 0
\(91\) 3.16250 0.331520
\(92\) 0 0
\(93\) 8.35504 0.866377
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.73648 0.176313 0.0881565 0.996107i \(-0.471902\pi\)
0.0881565 + 0.996107i \(0.471902\pi\)
\(98\) 0 0
\(99\) 1.34730 0.135408
\(100\) 0 0
\(101\) −9.98545 −0.993590 −0.496795 0.867868i \(-0.665490\pi\)
−0.496795 + 0.867868i \(0.665490\pi\)
\(102\) 0 0
\(103\) 1.28581 0.126694 0.0633472 0.997992i \(-0.479822\pi\)
0.0633472 + 0.997992i \(0.479822\pi\)
\(104\) 0 0
\(105\) 5.94356 0.580032
\(106\) 0 0
\(107\) 0.674992 0.0652540 0.0326270 0.999468i \(-0.489613\pi\)
0.0326270 + 0.999468i \(0.489613\pi\)
\(108\) 0 0
\(109\) −9.87939 −0.946273 −0.473137 0.880989i \(-0.656878\pi\)
−0.473137 + 0.880989i \(0.656878\pi\)
\(110\) 0 0
\(111\) −8.45336 −0.802358
\(112\) 0 0
\(113\) −4.61081 −0.433749 −0.216874 0.976199i \(-0.569586\pi\)
−0.216874 + 0.976199i \(0.569586\pi\)
\(114\) 0 0
\(115\) −5.53209 −0.515870
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) 0.716881 0.0657164
\(120\) 0 0
\(121\) −6.73917 −0.612652
\(122\) 0 0
\(123\) 15.2986 1.37943
\(124\) 0 0
\(125\) 12.1557 1.08724
\(126\) 0 0
\(127\) −9.33544 −0.828386 −0.414193 0.910189i \(-0.635936\pi\)
−0.414193 + 0.910189i \(0.635936\pi\)
\(128\) 0 0
\(129\) 10.6382 0.936637
\(130\) 0 0
\(131\) 13.2148 1.15458 0.577292 0.816538i \(-0.304109\pi\)
0.577292 + 0.816538i \(0.304109\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −10.5175 −0.905206
\(136\) 0 0
\(137\) −21.8794 −1.86928 −0.934641 0.355593i \(-0.884279\pi\)
−0.934641 + 0.355593i \(0.884279\pi\)
\(138\) 0 0
\(139\) −20.5963 −1.74695 −0.873476 0.486867i \(-0.838140\pi\)
−0.873476 + 0.486867i \(0.838140\pi\)
\(140\) 0 0
\(141\) −7.92127 −0.667092
\(142\) 0 0
\(143\) −3.16250 −0.264462
\(144\) 0 0
\(145\) −19.6878 −1.63498
\(146\) 0 0
\(147\) 4.19665 0.346134
\(148\) 0 0
\(149\) 8.14290 0.667093 0.333546 0.942734i \(-0.391755\pi\)
0.333546 + 0.942734i \(0.391755\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) −0.226682 −0.0183261
\(154\) 0 0
\(155\) 10.2490 0.823217
\(156\) 0 0
\(157\) −5.39693 −0.430722 −0.215361 0.976535i \(-0.569093\pi\)
−0.215361 + 0.976535i \(0.569093\pi\)
\(158\) 0 0
\(159\) −11.8990 −0.943651
\(160\) 0 0
\(161\) 6.07604 0.478859
\(162\) 0 0
\(163\) −22.4884 −1.76143 −0.880715 0.473646i \(-0.842938\pi\)
−0.880715 + 0.473646i \(0.842938\pi\)
\(164\) 0 0
\(165\) −5.94356 −0.462706
\(166\) 0 0
\(167\) 17.7219 1.37136 0.685682 0.727901i \(-0.259504\pi\)
0.685682 + 0.727901i \(0.259504\pi\)
\(168\) 0 0
\(169\) −10.6527 −0.819439
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −19.1702 −1.45749 −0.728743 0.684787i \(-0.759895\pi\)
−0.728743 + 0.684787i \(0.759895\pi\)
\(174\) 0 0
\(175\) −3.03003 −0.229049
\(176\) 0 0
\(177\) 0.403733 0.0303465
\(178\) 0 0
\(179\) 4.54664 0.339832 0.169916 0.985459i \(-0.445650\pi\)
0.169916 + 0.985459i \(0.445650\pi\)
\(180\) 0 0
\(181\) −15.1702 −1.12760 −0.563798 0.825913i \(-0.690660\pi\)
−0.563798 + 0.825913i \(0.690660\pi\)
\(182\) 0 0
\(183\) 16.2686 1.20261
\(184\) 0 0
\(185\) −10.3696 −0.762387
\(186\) 0 0
\(187\) −0.716881 −0.0524236
\(188\) 0 0
\(189\) 11.5517 0.840262
\(190\) 0 0
\(191\) −13.6459 −0.987382 −0.493691 0.869637i \(-0.664353\pi\)
−0.493691 + 0.869637i \(0.664353\pi\)
\(192\) 0 0
\(193\) −9.33544 −0.671979 −0.335990 0.941866i \(-0.609071\pi\)
−0.335990 + 0.941866i \(0.609071\pi\)
\(194\) 0 0
\(195\) 4.41147 0.315912
\(196\) 0 0
\(197\) 4.64590 0.331006 0.165503 0.986209i \(-0.447075\pi\)
0.165503 + 0.986209i \(0.447075\pi\)
\(198\) 0 0
\(199\) 0.431074 0.0305581 0.0152790 0.999883i \(-0.495136\pi\)
0.0152790 + 0.999883i \(0.495136\pi\)
\(200\) 0 0
\(201\) −10.7888 −0.760983
\(202\) 0 0
\(203\) 21.6236 1.51768
\(204\) 0 0
\(205\) 18.7665 1.31071
\(206\) 0 0
\(207\) −1.92127 −0.133538
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 17.3824 1.19665 0.598326 0.801253i \(-0.295833\pi\)
0.598326 + 0.801253i \(0.295833\pi\)
\(212\) 0 0
\(213\) 9.89899 0.678267
\(214\) 0 0
\(215\) 13.0496 0.889977
\(216\) 0 0
\(217\) −11.2567 −0.764155
\(218\) 0 0
\(219\) 23.5553 1.59172
\(220\) 0 0
\(221\) 0.532089 0.0357922
\(222\) 0 0
\(223\) −13.2395 −0.886581 −0.443290 0.896378i \(-0.646189\pi\)
−0.443290 + 0.896378i \(0.646189\pi\)
\(224\) 0 0
\(225\) 0.958111 0.0638741
\(226\) 0 0
\(227\) −7.77425 −0.515995 −0.257998 0.966146i \(-0.583063\pi\)
−0.257998 + 0.966146i \(0.583063\pi\)
\(228\) 0 0
\(229\) 2.73917 0.181009 0.0905047 0.995896i \(-0.471152\pi\)
0.0905047 + 0.995896i \(0.471152\pi\)
\(230\) 0 0
\(231\) 6.52797 0.429509
\(232\) 0 0
\(233\) −1.87939 −0.123123 −0.0615613 0.998103i \(-0.519608\pi\)
−0.0615613 + 0.998103i \(0.519608\pi\)
\(234\) 0 0
\(235\) −9.71688 −0.633859
\(236\) 0 0
\(237\) −19.2986 −1.25358
\(238\) 0 0
\(239\) −18.8033 −1.21629 −0.608144 0.793827i \(-0.708086\pi\)
−0.608144 + 0.793827i \(0.708086\pi\)
\(240\) 0 0
\(241\) −11.6313 −0.749241 −0.374621 0.927178i \(-0.622227\pi\)
−0.374621 + 0.927178i \(0.622227\pi\)
\(242\) 0 0
\(243\) −6.65270 −0.426771
\(244\) 0 0
\(245\) 5.14796 0.328891
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −20.0692 −1.27184
\(250\) 0 0
\(251\) −8.09152 −0.510732 −0.255366 0.966844i \(-0.582196\pi\)
−0.255366 + 0.966844i \(0.582196\pi\)
\(252\) 0 0
\(253\) −6.07604 −0.381997
\(254\) 0 0
\(255\) 1.00000 0.0626224
\(256\) 0 0
\(257\) −9.94862 −0.620578 −0.310289 0.950642i \(-0.600426\pi\)
−0.310289 + 0.950642i \(0.600426\pi\)
\(258\) 0 0
\(259\) 11.3892 0.707690
\(260\) 0 0
\(261\) −6.83750 −0.423230
\(262\) 0 0
\(263\) 16.2814 1.00395 0.501976 0.864882i \(-0.332607\pi\)
0.501976 + 0.864882i \(0.332607\pi\)
\(264\) 0 0
\(265\) −14.5963 −0.896642
\(266\) 0 0
\(267\) 7.04189 0.430957
\(268\) 0 0
\(269\) −14.2422 −0.868360 −0.434180 0.900826i \(-0.642962\pi\)
−0.434180 + 0.900826i \(0.642962\pi\)
\(270\) 0 0
\(271\) 25.4807 1.54784 0.773921 0.633282i \(-0.218293\pi\)
0.773921 + 0.633282i \(0.218293\pi\)
\(272\) 0 0
\(273\) −4.84524 −0.293247
\(274\) 0 0
\(275\) 3.03003 0.182718
\(276\) 0 0
\(277\) 11.2567 0.676350 0.338175 0.941083i \(-0.390190\pi\)
0.338175 + 0.941083i \(0.390190\pi\)
\(278\) 0 0
\(279\) 3.55943 0.213098
\(280\) 0 0
\(281\) 2.28817 0.136501 0.0682504 0.997668i \(-0.478258\pi\)
0.0682504 + 0.997668i \(0.478258\pi\)
\(282\) 0 0
\(283\) −7.78106 −0.462536 −0.231268 0.972890i \(-0.574287\pi\)
−0.231268 + 0.972890i \(0.574287\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −20.6117 −1.21667
\(288\) 0 0
\(289\) −16.8794 −0.992905
\(290\) 0 0
\(291\) −2.66044 −0.155958
\(292\) 0 0
\(293\) −4.09327 −0.239132 −0.119566 0.992826i \(-0.538150\pi\)
−0.119566 + 0.992826i \(0.538150\pi\)
\(294\) 0 0
\(295\) 0.495252 0.0288347
\(296\) 0 0
\(297\) −11.5517 −0.670297
\(298\) 0 0
\(299\) 4.50980 0.260808
\(300\) 0 0
\(301\) −14.3327 −0.826126
\(302\) 0 0
\(303\) 15.2986 0.878882
\(304\) 0 0
\(305\) 19.9564 1.14270
\(306\) 0 0
\(307\) −17.0496 −0.973074 −0.486537 0.873660i \(-0.661740\pi\)
−0.486537 + 0.873660i \(0.661740\pi\)
\(308\) 0 0
\(309\) −1.96997 −0.112068
\(310\) 0 0
\(311\) 18.0642 1.02433 0.512163 0.858888i \(-0.328844\pi\)
0.512163 + 0.858888i \(0.328844\pi\)
\(312\) 0 0
\(313\) −3.17024 −0.179193 −0.0895964 0.995978i \(-0.528558\pi\)
−0.0895964 + 0.995978i \(0.528558\pi\)
\(314\) 0 0
\(315\) 2.53209 0.142667
\(316\) 0 0
\(317\) −15.3746 −0.863526 −0.431763 0.901987i \(-0.642108\pi\)
−0.431763 + 0.901987i \(0.642108\pi\)
\(318\) 0 0
\(319\) −21.6236 −1.21069
\(320\) 0 0
\(321\) −1.03415 −0.0577205
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −2.24897 −0.124750
\(326\) 0 0
\(327\) 15.1361 0.837028
\(328\) 0 0
\(329\) 10.6723 0.588383
\(330\) 0 0
\(331\) 25.7101 1.41315 0.706577 0.707636i \(-0.250239\pi\)
0.706577 + 0.707636i \(0.250239\pi\)
\(332\) 0 0
\(333\) −3.60132 −0.197351
\(334\) 0 0
\(335\) −13.2344 −0.723074
\(336\) 0 0
\(337\) 34.8016 1.89576 0.947882 0.318622i \(-0.103220\pi\)
0.947882 + 0.318622i \(0.103220\pi\)
\(338\) 0 0
\(339\) 7.06418 0.383673
\(340\) 0 0
\(341\) 11.2567 0.609585
\(342\) 0 0
\(343\) −20.1034 −1.08548
\(344\) 0 0
\(345\) 8.47565 0.456314
\(346\) 0 0
\(347\) −0.647651 −0.0347677 −0.0173839 0.999849i \(-0.505534\pi\)
−0.0173839 + 0.999849i \(0.505534\pi\)
\(348\) 0 0
\(349\) 11.0000 0.588817 0.294408 0.955680i \(-0.404877\pi\)
0.294408 + 0.955680i \(0.404877\pi\)
\(350\) 0 0
\(351\) 8.57398 0.457645
\(352\) 0 0
\(353\) 17.3851 0.925314 0.462657 0.886537i \(-0.346896\pi\)
0.462657 + 0.886537i \(0.346896\pi\)
\(354\) 0 0
\(355\) 12.1429 0.644478
\(356\) 0 0
\(357\) −1.09833 −0.0581296
\(358\) 0 0
\(359\) −18.3337 −0.967615 −0.483807 0.875175i \(-0.660746\pi\)
−0.483807 + 0.875175i \(0.660746\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 10.3250 0.541922
\(364\) 0 0
\(365\) 28.8949 1.51243
\(366\) 0 0
\(367\) 11.8280 0.617417 0.308708 0.951157i \(-0.400103\pi\)
0.308708 + 0.951157i \(0.400103\pi\)
\(368\) 0 0
\(369\) 6.51754 0.339290
\(370\) 0 0
\(371\) 16.0315 0.832312
\(372\) 0 0
\(373\) 2.26083 0.117061 0.0585307 0.998286i \(-0.481358\pi\)
0.0585307 + 0.998286i \(0.481358\pi\)
\(374\) 0 0
\(375\) −18.6236 −0.961719
\(376\) 0 0
\(377\) 16.0496 0.826598
\(378\) 0 0
\(379\) −12.4243 −0.638192 −0.319096 0.947722i \(-0.603379\pi\)
−0.319096 + 0.947722i \(0.603379\pi\)
\(380\) 0 0
\(381\) 14.3027 0.732750
\(382\) 0 0
\(383\) 19.3746 0.989998 0.494999 0.868894i \(-0.335168\pi\)
0.494999 + 0.868894i \(0.335168\pi\)
\(384\) 0 0
\(385\) 8.00774 0.408112
\(386\) 0 0
\(387\) 4.53209 0.230379
\(388\) 0 0
\(389\) 21.9932 1.11510 0.557550 0.830144i \(-0.311742\pi\)
0.557550 + 0.830144i \(0.311742\pi\)
\(390\) 0 0
\(391\) 1.02229 0.0516994
\(392\) 0 0
\(393\) −20.2463 −1.02129
\(394\) 0 0
\(395\) −23.6732 −1.19113
\(396\) 0 0
\(397\) −0.135163 −0.00678362 −0.00339181 0.999994i \(-0.501080\pi\)
−0.00339181 + 0.999994i \(0.501080\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 38.2499 1.91011 0.955055 0.296430i \(-0.0957962\pi\)
0.955055 + 0.296430i \(0.0957962\pi\)
\(402\) 0 0
\(403\) −8.35504 −0.416194
\(404\) 0 0
\(405\) 12.4338 0.617839
\(406\) 0 0
\(407\) −11.3892 −0.564541
\(408\) 0 0
\(409\) −18.5202 −0.915766 −0.457883 0.889012i \(-0.651392\pi\)
−0.457883 + 0.889012i \(0.651392\pi\)
\(410\) 0 0
\(411\) 33.5212 1.65348
\(412\) 0 0
\(413\) −0.543948 −0.0267660
\(414\) 0 0
\(415\) −24.6186 −1.20848
\(416\) 0 0
\(417\) 31.5553 1.54527
\(418\) 0 0
\(419\) −20.2567 −0.989605 −0.494803 0.869005i \(-0.664760\pi\)
−0.494803 + 0.869005i \(0.664760\pi\)
\(420\) 0 0
\(421\) −2.55707 −0.124624 −0.0623119 0.998057i \(-0.519847\pi\)
−0.0623119 + 0.998057i \(0.519847\pi\)
\(422\) 0 0
\(423\) −3.37464 −0.164080
\(424\) 0 0
\(425\) −0.509800 −0.0247289
\(426\) 0 0
\(427\) −21.9186 −1.06071
\(428\) 0 0
\(429\) 4.84524 0.233930
\(430\) 0 0
\(431\) 9.69965 0.467215 0.233608 0.972331i \(-0.424947\pi\)
0.233608 + 0.972331i \(0.424947\pi\)
\(432\) 0 0
\(433\) −3.43613 −0.165130 −0.0825649 0.996586i \(-0.526311\pi\)
−0.0825649 + 0.996586i \(0.526311\pi\)
\(434\) 0 0
\(435\) 30.1634 1.44623
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 38.1215 1.81944 0.909721 0.415220i \(-0.136295\pi\)
0.909721 + 0.415220i \(0.136295\pi\)
\(440\) 0 0
\(441\) 1.78787 0.0851365
\(442\) 0 0
\(443\) −4.76382 −0.226336 −0.113168 0.993576i \(-0.536100\pi\)
−0.113168 + 0.993576i \(0.536100\pi\)
\(444\) 0 0
\(445\) 8.63816 0.409488
\(446\) 0 0
\(447\) −12.4757 −0.590078
\(448\) 0 0
\(449\) 6.29179 0.296928 0.148464 0.988918i \(-0.452567\pi\)
0.148464 + 0.988918i \(0.452567\pi\)
\(450\) 0 0
\(451\) 20.6117 0.970569
\(452\) 0 0
\(453\) 24.5134 1.15174
\(454\) 0 0
\(455\) −5.94356 −0.278639
\(456\) 0 0
\(457\) 35.6459 1.66744 0.833722 0.552184i \(-0.186205\pi\)
0.833722 + 0.552184i \(0.186205\pi\)
\(458\) 0 0
\(459\) 1.94356 0.0907178
\(460\) 0 0
\(461\) −31.2104 −1.45361 −0.726806 0.686843i \(-0.758996\pi\)
−0.726806 + 0.686843i \(0.758996\pi\)
\(462\) 0 0
\(463\) 5.89662 0.274039 0.137020 0.990568i \(-0.456248\pi\)
0.137020 + 0.990568i \(0.456248\pi\)
\(464\) 0 0
\(465\) −15.7023 −0.728178
\(466\) 0 0
\(467\) 33.4534 1.54804 0.774019 0.633163i \(-0.218244\pi\)
0.774019 + 0.633163i \(0.218244\pi\)
\(468\) 0 0
\(469\) 14.5357 0.671197
\(470\) 0 0
\(471\) 8.26857 0.380996
\(472\) 0 0
\(473\) 14.3327 0.659020
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.06923 −0.232104
\(478\) 0 0
\(479\) 25.8111 1.17934 0.589669 0.807645i \(-0.299258\pi\)
0.589669 + 0.807645i \(0.299258\pi\)
\(480\) 0 0
\(481\) 8.45336 0.385440
\(482\) 0 0
\(483\) −9.30903 −0.423575
\(484\) 0 0
\(485\) −3.26352 −0.148189
\(486\) 0 0
\(487\) −33.7992 −1.53159 −0.765795 0.643085i \(-0.777654\pi\)
−0.765795 + 0.643085i \(0.777654\pi\)
\(488\) 0 0
\(489\) 34.4543 1.55808
\(490\) 0 0
\(491\) −6.69553 −0.302165 −0.151082 0.988521i \(-0.548276\pi\)
−0.151082 + 0.988521i \(0.548276\pi\)
\(492\) 0 0
\(493\) 3.63816 0.163854
\(494\) 0 0
\(495\) −2.53209 −0.113809
\(496\) 0 0
\(497\) −13.3369 −0.598240
\(498\) 0 0
\(499\) 3.35235 0.150072 0.0750359 0.997181i \(-0.476093\pi\)
0.0750359 + 0.997181i \(0.476093\pi\)
\(500\) 0 0
\(501\) −27.1516 −1.21304
\(502\) 0 0
\(503\) −22.7716 −1.01533 −0.507667 0.861553i \(-0.669492\pi\)
−0.507667 + 0.861553i \(0.669492\pi\)
\(504\) 0 0
\(505\) 18.7665 0.835099
\(506\) 0 0
\(507\) 16.3209 0.724836
\(508\) 0 0
\(509\) −40.4320 −1.79212 −0.896059 0.443936i \(-0.853582\pi\)
−0.896059 + 0.443936i \(0.853582\pi\)
\(510\) 0 0
\(511\) −31.7360 −1.40392
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.41653 −0.106485
\(516\) 0 0
\(517\) −10.6723 −0.469367
\(518\) 0 0
\(519\) 29.3705 1.28922
\(520\) 0 0
\(521\) −11.6108 −0.508679 −0.254340 0.967115i \(-0.581858\pi\)
−0.254340 + 0.967115i \(0.581858\pi\)
\(522\) 0 0
\(523\) 11.2986 0.494053 0.247027 0.969009i \(-0.420546\pi\)
0.247027 + 0.969009i \(0.420546\pi\)
\(524\) 0 0
\(525\) 4.64227 0.202605
\(526\) 0 0
\(527\) −1.89393 −0.0825010
\(528\) 0 0
\(529\) −14.3354 −0.623280
\(530\) 0 0
\(531\) 0.171999 0.00746413
\(532\) 0 0
\(533\) −15.2986 −0.662656
\(534\) 0 0
\(535\) −1.26857 −0.0548451
\(536\) 0 0
\(537\) −6.96585 −0.300599
\(538\) 0 0
\(539\) 5.65413 0.243541
\(540\) 0 0
\(541\) 14.3081 0.615153 0.307577 0.951523i \(-0.400482\pi\)
0.307577 + 0.951523i \(0.400482\pi\)
\(542\) 0 0
\(543\) 23.2422 0.997417
\(544\) 0 0
\(545\) 18.5672 0.795330
\(546\) 0 0
\(547\) −35.2942 −1.50907 −0.754535 0.656260i \(-0.772137\pi\)
−0.754535 + 0.656260i \(0.772137\pi\)
\(548\) 0 0
\(549\) 6.93077 0.295798
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 26.0009 1.10567
\(554\) 0 0
\(555\) 15.8871 0.674371
\(556\) 0 0
\(557\) −29.2772 −1.24052 −0.620258 0.784398i \(-0.712972\pi\)
−0.620258 + 0.784398i \(0.712972\pi\)
\(558\) 0 0
\(559\) −10.6382 −0.449946
\(560\) 0 0
\(561\) 1.09833 0.0463714
\(562\) 0 0
\(563\) 11.9358 0.503035 0.251517 0.967853i \(-0.419070\pi\)
0.251517 + 0.967853i \(0.419070\pi\)
\(564\) 0 0
\(565\) 8.66550 0.364560
\(566\) 0 0
\(567\) −13.6563 −0.573512
\(568\) 0 0
\(569\) −20.5526 −0.861611 −0.430805 0.902445i \(-0.641770\pi\)
−0.430805 + 0.902445i \(0.641770\pi\)
\(570\) 0 0
\(571\) 34.7202 1.45299 0.726497 0.687169i \(-0.241147\pi\)
0.726497 + 0.687169i \(0.241147\pi\)
\(572\) 0 0
\(573\) 20.9067 0.873391
\(574\) 0 0
\(575\) −4.32089 −0.180194
\(576\) 0 0
\(577\) −9.33511 −0.388626 −0.194313 0.980940i \(-0.562248\pi\)
−0.194313 + 0.980940i \(0.562248\pi\)
\(578\) 0 0
\(579\) 14.3027 0.594401
\(580\) 0 0
\(581\) 27.0392 1.12178
\(582\) 0 0
\(583\) −16.0315 −0.663955
\(584\) 0 0
\(585\) 1.87939 0.0777030
\(586\) 0 0
\(587\) −32.2053 −1.32926 −0.664628 0.747174i \(-0.731410\pi\)
−0.664628 + 0.747174i \(0.731410\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −7.11793 −0.292792
\(592\) 0 0
\(593\) 27.7665 1.14023 0.570117 0.821564i \(-0.306898\pi\)
0.570117 + 0.821564i \(0.306898\pi\)
\(594\) 0 0
\(595\) −1.34730 −0.0552338
\(596\) 0 0
\(597\) −0.660444 −0.0270302
\(598\) 0 0
\(599\) −24.8999 −1.01738 −0.508692 0.860949i \(-0.669871\pi\)
−0.508692 + 0.860949i \(0.669871\pi\)
\(600\) 0 0
\(601\) 15.7392 0.642014 0.321007 0.947077i \(-0.395979\pi\)
0.321007 + 0.947077i \(0.395979\pi\)
\(602\) 0 0
\(603\) −4.59627 −0.187174
\(604\) 0 0
\(605\) 12.6655 0.514926
\(606\) 0 0
\(607\) 4.16756 0.169156 0.0845779 0.996417i \(-0.473046\pi\)
0.0845779 + 0.996417i \(0.473046\pi\)
\(608\) 0 0
\(609\) −33.1293 −1.34247
\(610\) 0 0
\(611\) 7.92127 0.320460
\(612\) 0 0
\(613\) 14.7124 0.594230 0.297115 0.954842i \(-0.403976\pi\)
0.297115 + 0.954842i \(0.403976\pi\)
\(614\) 0 0
\(615\) −28.7520 −1.15939
\(616\) 0 0
\(617\) −31.8512 −1.28228 −0.641141 0.767423i \(-0.721539\pi\)
−0.641141 + 0.767423i \(0.721539\pi\)
\(618\) 0 0
\(619\) −21.2668 −0.854786 −0.427393 0.904066i \(-0.640568\pi\)
−0.427393 + 0.904066i \(0.640568\pi\)
\(620\) 0 0
\(621\) 16.4730 0.661037
\(622\) 0 0
\(623\) −9.48751 −0.380109
\(624\) 0 0
\(625\) −15.5057 −0.620227
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.91622 0.0764048
\(630\) 0 0
\(631\) −0.741534 −0.0295200 −0.0147600 0.999891i \(-0.504698\pi\)
−0.0147600 + 0.999891i \(0.504698\pi\)
\(632\) 0 0
\(633\) −26.6313 −1.05850
\(634\) 0 0
\(635\) 17.5449 0.696247
\(636\) 0 0
\(637\) −4.19665 −0.166277
\(638\) 0 0
\(639\) 4.21719 0.166829
\(640\) 0 0
\(641\) −24.8253 −0.980541 −0.490270 0.871570i \(-0.663102\pi\)
−0.490270 + 0.871570i \(0.663102\pi\)
\(642\) 0 0
\(643\) 46.4989 1.83374 0.916868 0.399190i \(-0.130709\pi\)
0.916868 + 0.399190i \(0.130709\pi\)
\(644\) 0 0
\(645\) −19.9932 −0.787231
\(646\) 0 0
\(647\) −11.2918 −0.443926 −0.221963 0.975055i \(-0.571246\pi\)
−0.221963 + 0.975055i \(0.571246\pi\)
\(648\) 0 0
\(649\) 0.543948 0.0213518
\(650\) 0 0
\(651\) 17.2463 0.675935
\(652\) 0 0
\(653\) 16.2216 0.634801 0.317401 0.948292i \(-0.397190\pi\)
0.317401 + 0.948292i \(0.397190\pi\)
\(654\) 0 0
\(655\) −24.8357 −0.970413
\(656\) 0 0
\(657\) 10.0351 0.391506
\(658\) 0 0
\(659\) 22.2713 0.867565 0.433783 0.901018i \(-0.357179\pi\)
0.433783 + 0.901018i \(0.357179\pi\)
\(660\) 0 0
\(661\) −12.0077 −0.467047 −0.233523 0.972351i \(-0.575026\pi\)
−0.233523 + 0.972351i \(0.575026\pi\)
\(662\) 0 0
\(663\) −0.815207 −0.0316600
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 30.8357 1.19396
\(668\) 0 0
\(669\) 20.2841 0.784227
\(670\) 0 0
\(671\) 21.9186 0.846158
\(672\) 0 0
\(673\) 22.0351 0.849390 0.424695 0.905336i \(-0.360381\pi\)
0.424695 + 0.905336i \(0.360381\pi\)
\(674\) 0 0
\(675\) −8.21482 −0.316189
\(676\) 0 0
\(677\) 8.07428 0.310320 0.155160 0.987889i \(-0.450411\pi\)
0.155160 + 0.987889i \(0.450411\pi\)
\(678\) 0 0
\(679\) 3.58441 0.137557
\(680\) 0 0
\(681\) 11.9108 0.456425
\(682\) 0 0
\(683\) 23.0933 0.883640 0.441820 0.897104i \(-0.354333\pi\)
0.441820 + 0.897104i \(0.354333\pi\)
\(684\) 0 0
\(685\) 41.1198 1.57111
\(686\) 0 0
\(687\) −4.19665 −0.160112
\(688\) 0 0
\(689\) 11.8990 0.453315
\(690\) 0 0
\(691\) −27.7493 −1.05563 −0.527816 0.849359i \(-0.676989\pi\)
−0.527816 + 0.849359i \(0.676989\pi\)
\(692\) 0 0
\(693\) 2.78106 0.105644
\(694\) 0 0
\(695\) 38.7083 1.46829
\(696\) 0 0
\(697\) −3.46791 −0.131357
\(698\) 0 0
\(699\) 2.87939 0.108908
\(700\) 0 0
\(701\) −3.90941 −0.147657 −0.0738283 0.997271i \(-0.523522\pi\)
−0.0738283 + 0.997271i \(0.523522\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 14.8871 0.560682
\(706\) 0 0
\(707\) −20.6117 −0.775185
\(708\) 0 0
\(709\) 41.7306 1.56723 0.783613 0.621249i \(-0.213375\pi\)
0.783613 + 0.621249i \(0.213375\pi\)
\(710\) 0 0
\(711\) −8.22163 −0.308335
\(712\) 0 0
\(713\) −16.0523 −0.601164
\(714\) 0 0
\(715\) 5.94356 0.222277
\(716\) 0 0
\(717\) 28.8084 1.07587
\(718\) 0 0
\(719\) −9.75784 −0.363906 −0.181953 0.983307i \(-0.558242\pi\)
−0.181953 + 0.983307i \(0.558242\pi\)
\(720\) 0 0
\(721\) 2.65413 0.0988451
\(722\) 0 0
\(723\) 17.8203 0.662743
\(724\) 0 0
\(725\) −15.3773 −0.571100
\(726\) 0 0
\(727\) −30.2044 −1.12022 −0.560109 0.828419i \(-0.689241\pi\)
−0.560109 + 0.828419i \(0.689241\pi\)
\(728\) 0 0
\(729\) 30.0401 1.11260
\(730\) 0 0
\(731\) −2.41147 −0.0891916
\(732\) 0 0
\(733\) −7.52166 −0.277819 −0.138909 0.990305i \(-0.544360\pi\)
−0.138909 + 0.990305i \(0.544360\pi\)
\(734\) 0 0
\(735\) −7.88713 −0.290921
\(736\) 0 0
\(737\) −14.5357 −0.535430
\(738\) 0 0
\(739\) 3.76744 0.138588 0.0692939 0.997596i \(-0.477925\pi\)
0.0692939 + 0.997596i \(0.477925\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −26.0770 −0.956671 −0.478336 0.878177i \(-0.658760\pi\)
−0.478336 + 0.878177i \(0.658760\pi\)
\(744\) 0 0
\(745\) −15.3037 −0.560682
\(746\) 0 0
\(747\) −8.54993 −0.312826
\(748\) 0 0
\(749\) 1.39330 0.0509102
\(750\) 0 0
\(751\) −31.7365 −1.15808 −0.579040 0.815299i \(-0.696573\pi\)
−0.579040 + 0.815299i \(0.696573\pi\)
\(752\) 0 0
\(753\) 12.3969 0.451769
\(754\) 0 0
\(755\) 30.0702 1.09437
\(756\) 0 0
\(757\) 19.3455 0.703126 0.351563 0.936164i \(-0.385650\pi\)
0.351563 + 0.936164i \(0.385650\pi\)
\(758\) 0 0
\(759\) 9.30903 0.337896
\(760\) 0 0
\(761\) 12.1284 0.439653 0.219826 0.975539i \(-0.429451\pi\)
0.219826 + 0.975539i \(0.429451\pi\)
\(762\) 0 0
\(763\) −20.3928 −0.738269
\(764\) 0 0
\(765\) 0.426022 0.0154029
\(766\) 0 0
\(767\) −0.403733 −0.0145780
\(768\) 0 0
\(769\) −27.1702 −0.979784 −0.489892 0.871783i \(-0.662964\pi\)
−0.489892 + 0.871783i \(0.662964\pi\)
\(770\) 0 0
\(771\) 15.2422 0.548933
\(772\) 0 0
\(773\) 13.0496 0.469363 0.234681 0.972072i \(-0.424595\pi\)
0.234681 + 0.972072i \(0.424595\pi\)
\(774\) 0 0
\(775\) 8.00505 0.287550
\(776\) 0 0
\(777\) −17.4492 −0.625988
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 13.3369 0.477231
\(782\) 0 0
\(783\) 58.6245 2.09507
\(784\) 0 0
\(785\) 10.1429 0.362016
\(786\) 0 0
\(787\) −41.1884 −1.46821 −0.734104 0.679037i \(-0.762398\pi\)
−0.734104 + 0.679037i \(0.762398\pi\)
\(788\) 0 0
\(789\) −24.9445 −0.888048
\(790\) 0 0
\(791\) −9.51754 −0.338405
\(792\) 0 0
\(793\) −16.2686 −0.577714
\(794\) 0 0
\(795\) 22.3628 0.793126
\(796\) 0 0
\(797\) −4.20676 −0.149011 −0.0745055 0.997221i \(-0.523738\pi\)
−0.0745055 + 0.997221i \(0.523738\pi\)
\(798\) 0 0
\(799\) 1.79561 0.0635240
\(800\) 0 0
\(801\) 3.00000 0.106000
\(802\) 0 0
\(803\) 31.7360 1.11994
\(804\) 0 0
\(805\) −11.4192 −0.402474
\(806\) 0 0
\(807\) 21.8203 0.768110
\(808\) 0 0
\(809\) −32.8527 −1.15504 −0.577519 0.816377i \(-0.695979\pi\)
−0.577519 + 0.816377i \(0.695979\pi\)
\(810\) 0 0
\(811\) −33.8381 −1.18822 −0.594108 0.804385i \(-0.702495\pi\)
−0.594108 + 0.804385i \(0.702495\pi\)
\(812\) 0 0
\(813\) −39.0387 −1.36915
\(814\) 0 0
\(815\) 42.2645 1.48046
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −2.06418 −0.0721282
\(820\) 0 0
\(821\) 1.30304 0.0454765 0.0227383 0.999741i \(-0.492762\pi\)
0.0227383 + 0.999741i \(0.492762\pi\)
\(822\) 0 0
\(823\) 53.4157 1.86195 0.930977 0.365077i \(-0.118957\pi\)
0.930977 + 0.365077i \(0.118957\pi\)
\(824\) 0 0
\(825\) −4.64227 −0.161623
\(826\) 0 0
\(827\) −44.5850 −1.55037 −0.775186 0.631732i \(-0.782344\pi\)
−0.775186 + 0.631732i \(0.782344\pi\)
\(828\) 0 0
\(829\) 1.35410 0.0470300 0.0235150 0.999723i \(-0.492514\pi\)
0.0235150 + 0.999723i \(0.492514\pi\)
\(830\) 0 0
\(831\) −17.2463 −0.598267
\(832\) 0 0
\(833\) −0.951304 −0.0329607
\(834\) 0 0
\(835\) −33.3063 −1.15261
\(836\) 0 0
\(837\) −30.5185 −1.05487
\(838\) 0 0
\(839\) 43.0907 1.48766 0.743828 0.668371i \(-0.233008\pi\)
0.743828 + 0.668371i \(0.233008\pi\)
\(840\) 0 0
\(841\) 80.7393 2.78411
\(842\) 0 0
\(843\) −3.50568 −0.120742
\(844\) 0 0
\(845\) 20.0205 0.688727
\(846\) 0 0
\(847\) −13.9108 −0.477982
\(848\) 0 0
\(849\) 11.9213 0.409137
\(850\) 0 0
\(851\) 16.2412 0.556742
\(852\) 0 0
\(853\) −40.3337 −1.38100 −0.690499 0.723333i \(-0.742609\pi\)
−0.690499 + 0.723333i \(0.742609\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −27.2012 −0.929176 −0.464588 0.885527i \(-0.653797\pi\)
−0.464588 + 0.885527i \(0.653797\pi\)
\(858\) 0 0
\(859\) −17.1456 −0.585000 −0.292500 0.956266i \(-0.594487\pi\)
−0.292500 + 0.956266i \(0.594487\pi\)
\(860\) 0 0
\(861\) 31.5790 1.07621
\(862\) 0 0
\(863\) 38.2235 1.30114 0.650571 0.759445i \(-0.274529\pi\)
0.650571 + 0.759445i \(0.274529\pi\)
\(864\) 0 0
\(865\) 36.0283 1.22500
\(866\) 0 0
\(867\) 25.8607 0.878276
\(868\) 0 0
\(869\) −26.0009 −0.882021
\(870\) 0 0
\(871\) 10.7888 0.365565
\(872\) 0 0
\(873\) −1.13341 −0.0383600
\(874\) 0 0
\(875\) 25.0915 0.848248
\(876\) 0 0
\(877\) 7.01043 0.236725 0.118363 0.992970i \(-0.462235\pi\)
0.118363 + 0.992970i \(0.462235\pi\)
\(878\) 0 0
\(879\) 6.27126 0.211524
\(880\) 0 0
\(881\) −28.5485 −0.961824 −0.480912 0.876769i \(-0.659694\pi\)
−0.480912 + 0.876769i \(0.659694\pi\)
\(882\) 0 0
\(883\) 15.3878 0.517839 0.258920 0.965899i \(-0.416634\pi\)
0.258920 + 0.965899i \(0.416634\pi\)
\(884\) 0 0
\(885\) −0.758770 −0.0255058
\(886\) 0 0
\(887\) −44.9421 −1.50901 −0.754505 0.656295i \(-0.772123\pi\)
−0.754505 + 0.656295i \(0.772123\pi\)
\(888\) 0 0
\(889\) −19.2700 −0.646295
\(890\) 0 0
\(891\) 13.6563 0.457504
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −8.54488 −0.285624
\(896\) 0 0
\(897\) −6.90941 −0.230699
\(898\) 0 0
\(899\) −57.1275 −1.90531
\(900\) 0 0
\(901\) 2.69728 0.0898595
\(902\) 0 0
\(903\) 21.9590 0.730751
\(904\) 0 0
\(905\) 28.5107 0.947729
\(906\) 0 0
\(907\) 45.1658 1.49971 0.749853 0.661605i \(-0.230124\pi\)
0.749853 + 0.661605i \(0.230124\pi\)
\(908\) 0 0
\(909\) 6.51754 0.216173
\(910\) 0 0
\(911\) 47.2336 1.56492 0.782460 0.622701i \(-0.213965\pi\)
0.782460 + 0.622701i \(0.213965\pi\)
\(912\) 0 0
\(913\) −27.0392 −0.894867
\(914\) 0 0
\(915\) −30.5749 −1.01078
\(916\) 0 0
\(917\) 27.2777 0.900790
\(918\) 0 0
\(919\) 36.6750 1.20980 0.604898 0.796303i \(-0.293214\pi\)
0.604898 + 0.796303i \(0.293214\pi\)
\(920\) 0 0
\(921\) 26.1215 0.860734
\(922\) 0 0
\(923\) −9.89899 −0.325829
\(924\) 0 0
\(925\) −8.09926 −0.266302
\(926\) 0 0
\(927\) −0.839251 −0.0275646
\(928\) 0 0
\(929\) −8.95273 −0.293730 −0.146865 0.989157i \(-0.546918\pi\)
−0.146865 + 0.989157i \(0.546918\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −27.6759 −0.906069
\(934\) 0 0
\(935\) 1.34730 0.0440613
\(936\) 0 0
\(937\) 3.60225 0.117680 0.0588402 0.998267i \(-0.481260\pi\)
0.0588402 + 0.998267i \(0.481260\pi\)
\(938\) 0 0
\(939\) 4.85710 0.158505
\(940\) 0 0
\(941\) 26.6432 0.868544 0.434272 0.900782i \(-0.357006\pi\)
0.434272 + 0.900782i \(0.357006\pi\)
\(942\) 0 0
\(943\) −29.3928 −0.957162
\(944\) 0 0
\(945\) −21.7101 −0.706229
\(946\) 0 0
\(947\) 50.8922 1.65377 0.826887 0.562368i \(-0.190110\pi\)
0.826887 + 0.562368i \(0.190110\pi\)
\(948\) 0 0
\(949\) −23.5553 −0.764638
\(950\) 0 0
\(951\) 23.5553 0.763833
\(952\) 0 0
\(953\) 41.5631 1.34636 0.673180 0.739479i \(-0.264928\pi\)
0.673180 + 0.739479i \(0.264928\pi\)
\(954\) 0 0
\(955\) 25.6459 0.829882
\(956\) 0 0
\(957\) 33.1293 1.07092
\(958\) 0 0
\(959\) −45.1629 −1.45839
\(960\) 0 0
\(961\) −1.26083 −0.0406719
\(962\) 0 0
\(963\) −0.440570 −0.0141972
\(964\) 0 0
\(965\) 17.5449 0.564790
\(966\) 0 0
\(967\) −50.6486 −1.62875 −0.814374 0.580340i \(-0.802920\pi\)
−0.814374 + 0.580340i \(0.802920\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −14.5594 −0.467234 −0.233617 0.972329i \(-0.575056\pi\)
−0.233617 + 0.972329i \(0.575056\pi\)
\(972\) 0 0
\(973\) −42.5144 −1.36295
\(974\) 0 0
\(975\) 3.44562 0.110348
\(976\) 0 0
\(977\) −13.0310 −0.416897 −0.208449 0.978033i \(-0.566841\pi\)
−0.208449 + 0.978033i \(0.566841\pi\)
\(978\) 0 0
\(979\) 9.48751 0.303222
\(980\) 0 0
\(981\) 6.44831 0.205879
\(982\) 0 0
\(983\) 9.99413 0.318763 0.159382 0.987217i \(-0.449050\pi\)
0.159382 + 0.987217i \(0.449050\pi\)
\(984\) 0 0
\(985\) −8.73143 −0.278206
\(986\) 0 0
\(987\) −16.3509 −0.520455
\(988\) 0 0
\(989\) −20.4388 −0.649917
\(990\) 0 0
\(991\) −52.9130 −1.68084 −0.840419 0.541937i \(-0.817691\pi\)
−0.840419 + 0.541937i \(0.817691\pi\)
\(992\) 0 0
\(993\) −39.3901 −1.25001
\(994\) 0 0
\(995\) −0.810155 −0.0256836
\(996\) 0 0
\(997\) −41.9486 −1.32853 −0.664263 0.747499i \(-0.731254\pi\)
−0.664263 + 0.747499i \(0.731254\pi\)
\(998\) 0 0
\(999\) 30.8776 0.976925
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.q.1.1 3
4.3 odd 2 5776.2.a.bl.1.3 3
19.6 even 9 152.2.q.a.17.1 yes 6
19.16 even 9 152.2.q.a.9.1 6
19.18 odd 2 2888.2.a.p.1.3 3
76.35 odd 18 304.2.u.d.161.1 6
76.63 odd 18 304.2.u.d.17.1 6
76.75 even 2 5776.2.a.bm.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.q.a.9.1 6 19.16 even 9
152.2.q.a.17.1 yes 6 19.6 even 9
304.2.u.d.17.1 6 76.63 odd 18
304.2.u.d.161.1 6 76.35 odd 18
2888.2.a.p.1.3 3 19.18 odd 2
2888.2.a.q.1.1 3 1.1 even 1 trivial
5776.2.a.bl.1.3 3 4.3 odd 2
5776.2.a.bm.1.1 3 76.75 even 2