Properties

Label 2888.2.a.p.1.2
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,0,0,-3,0,-3,0,3,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.347296\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.347296 q^{3} +1.53209 q^{5} -0.305407 q^{7} -2.87939 q^{9} +0.305407 q^{11} -0.347296 q^{13} +0.532089 q^{15} -1.87939 q^{17} -0.106067 q^{21} -2.83750 q^{23} -2.65270 q^{25} -2.04189 q^{27} -3.50980 q^{29} -5.82295 q^{31} +0.106067 q^{33} -0.467911 q^{35} +8.12836 q^{37} -0.120615 q^{39} -2.47565 q^{41} -1.16250 q^{43} -4.41147 q^{45} -6.24897 q^{47} -6.90673 q^{49} -0.652704 q^{51} +7.20708 q^{53} +0.467911 q^{55} +11.3969 q^{59} -11.3746 q^{61} +0.879385 q^{63} -0.532089 q^{65} -0.361844 q^{67} -0.985452 q^{69} -12.9659 q^{71} +5.99319 q^{73} -0.921274 q^{75} -0.0932736 q^{77} -9.04189 q^{79} +7.92902 q^{81} -16.5621 q^{83} -2.87939 q^{85} -1.21894 q^{87} +1.04189 q^{89} +0.106067 q^{91} -2.02229 q^{93} +9.39693 q^{97} -0.879385 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{7} - 3 q^{9} + 3 q^{11} - 3 q^{15} + 12 q^{21} - 6 q^{23} - 9 q^{25} - 3 q^{27} - 12 q^{29} + 3 q^{31} - 12 q^{33} - 6 q^{35} + 6 q^{37} - 6 q^{39} + 12 q^{41} - 6 q^{43} - 3 q^{45} - 6 q^{47}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.347296 0.200512 0.100256 0.994962i \(-0.468034\pi\)
0.100256 + 0.994962i \(0.468034\pi\)
\(4\) 0 0
\(5\) 1.53209 0.685171 0.342585 0.939487i \(-0.388697\pi\)
0.342585 + 0.939487i \(0.388697\pi\)
\(6\) 0 0
\(7\) −0.305407 −0.115433 −0.0577166 0.998333i \(-0.518382\pi\)
−0.0577166 + 0.998333i \(0.518382\pi\)
\(8\) 0 0
\(9\) −2.87939 −0.959795
\(10\) 0 0
\(11\) 0.305407 0.0920838 0.0460419 0.998940i \(-0.485339\pi\)
0.0460419 + 0.998940i \(0.485339\pi\)
\(12\) 0 0
\(13\) −0.347296 −0.0963227 −0.0481613 0.998840i \(-0.515336\pi\)
−0.0481613 + 0.998840i \(0.515336\pi\)
\(14\) 0 0
\(15\) 0.532089 0.137385
\(16\) 0 0
\(17\) −1.87939 −0.455818 −0.227909 0.973682i \(-0.573189\pi\)
−0.227909 + 0.973682i \(0.573189\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) −0.106067 −0.0231457
\(22\) 0 0
\(23\) −2.83750 −0.591659 −0.295829 0.955241i \(-0.595596\pi\)
−0.295829 + 0.955241i \(0.595596\pi\)
\(24\) 0 0
\(25\) −2.65270 −0.530541
\(26\) 0 0
\(27\) −2.04189 −0.392962
\(28\) 0 0
\(29\) −3.50980 −0.651754 −0.325877 0.945412i \(-0.605659\pi\)
−0.325877 + 0.945412i \(0.605659\pi\)
\(30\) 0 0
\(31\) −5.82295 −1.04583 −0.522916 0.852384i \(-0.675156\pi\)
−0.522916 + 0.852384i \(0.675156\pi\)
\(32\) 0 0
\(33\) 0.106067 0.0184639
\(34\) 0 0
\(35\) −0.467911 −0.0790914
\(36\) 0 0
\(37\) 8.12836 1.33629 0.668147 0.744030i \(-0.267088\pi\)
0.668147 + 0.744030i \(0.267088\pi\)
\(38\) 0 0
\(39\) −0.120615 −0.0193138
\(40\) 0 0
\(41\) −2.47565 −0.386632 −0.193316 0.981137i \(-0.561924\pi\)
−0.193316 + 0.981137i \(0.561924\pi\)
\(42\) 0 0
\(43\) −1.16250 −0.177280 −0.0886401 0.996064i \(-0.528252\pi\)
−0.0886401 + 0.996064i \(0.528252\pi\)
\(44\) 0 0
\(45\) −4.41147 −0.657624
\(46\) 0 0
\(47\) −6.24897 −0.911506 −0.455753 0.890106i \(-0.650630\pi\)
−0.455753 + 0.890106i \(0.650630\pi\)
\(48\) 0 0
\(49\) −6.90673 −0.986675
\(50\) 0 0
\(51\) −0.652704 −0.0913968
\(52\) 0 0
\(53\) 7.20708 0.989969 0.494984 0.868902i \(-0.335174\pi\)
0.494984 + 0.868902i \(0.335174\pi\)
\(54\) 0 0
\(55\) 0.467911 0.0630931
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.3969 1.48375 0.741877 0.670536i \(-0.233936\pi\)
0.741877 + 0.670536i \(0.233936\pi\)
\(60\) 0 0
\(61\) −11.3746 −1.45637 −0.728187 0.685379i \(-0.759637\pi\)
−0.728187 + 0.685379i \(0.759637\pi\)
\(62\) 0 0
\(63\) 0.879385 0.110792
\(64\) 0 0
\(65\) −0.532089 −0.0659975
\(66\) 0 0
\(67\) −0.361844 −0.0442063 −0.0221032 0.999756i \(-0.507036\pi\)
−0.0221032 + 0.999756i \(0.507036\pi\)
\(68\) 0 0
\(69\) −0.985452 −0.118634
\(70\) 0 0
\(71\) −12.9659 −1.53876 −0.769382 0.638789i \(-0.779436\pi\)
−0.769382 + 0.638789i \(0.779436\pi\)
\(72\) 0 0
\(73\) 5.99319 0.701450 0.350725 0.936478i \(-0.385935\pi\)
0.350725 + 0.936478i \(0.385935\pi\)
\(74\) 0 0
\(75\) −0.921274 −0.106380
\(76\) 0 0
\(77\) −0.0932736 −0.0106295
\(78\) 0 0
\(79\) −9.04189 −1.01729 −0.508646 0.860976i \(-0.669854\pi\)
−0.508646 + 0.860976i \(0.669854\pi\)
\(80\) 0 0
\(81\) 7.92902 0.881002
\(82\) 0 0
\(83\) −16.5621 −1.81793 −0.908964 0.416874i \(-0.863126\pi\)
−0.908964 + 0.416874i \(0.863126\pi\)
\(84\) 0 0
\(85\) −2.87939 −0.312313
\(86\) 0 0
\(87\) −1.21894 −0.130684
\(88\) 0 0
\(89\) 1.04189 0.110440 0.0552200 0.998474i \(-0.482414\pi\)
0.0552200 + 0.998474i \(0.482414\pi\)
\(90\) 0 0
\(91\) 0.106067 0.0111188
\(92\) 0 0
\(93\) −2.02229 −0.209702
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 9.39693 0.954113 0.477057 0.878873i \(-0.341704\pi\)
0.477057 + 0.878873i \(0.341704\pi\)
\(98\) 0 0
\(99\) −0.879385 −0.0883815
\(100\) 0 0
\(101\) 2.47565 0.246337 0.123168 0.992386i \(-0.460695\pi\)
0.123168 + 0.992386i \(0.460695\pi\)
\(102\) 0 0
\(103\) −16.7297 −1.64842 −0.824212 0.566281i \(-0.808382\pi\)
−0.824212 + 0.566281i \(0.808382\pi\)
\(104\) 0 0
\(105\) −0.162504 −0.0158587
\(106\) 0 0
\(107\) −7.21213 −0.697223 −0.348612 0.937267i \(-0.613347\pi\)
−0.348612 + 0.937267i \(0.613347\pi\)
\(108\) 0 0
\(109\) 6.46791 0.619514 0.309757 0.950816i \(-0.399752\pi\)
0.309757 + 0.950816i \(0.399752\pi\)
\(110\) 0 0
\(111\) 2.82295 0.267942
\(112\) 0 0
\(113\) 13.5175 1.27162 0.635812 0.771844i \(-0.280666\pi\)
0.635812 + 0.771844i \(0.280666\pi\)
\(114\) 0 0
\(115\) −4.34730 −0.405387
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) 0.573978 0.0526165
\(120\) 0 0
\(121\) −10.9067 −0.991521
\(122\) 0 0
\(123\) −0.859785 −0.0775242
\(124\) 0 0
\(125\) −11.7246 −1.04868
\(126\) 0 0
\(127\) 9.94862 0.882797 0.441398 0.897311i \(-0.354483\pi\)
0.441398 + 0.897311i \(0.354483\pi\)
\(128\) 0 0
\(129\) −0.403733 −0.0355467
\(130\) 0 0
\(131\) 10.4165 0.910096 0.455048 0.890467i \(-0.349622\pi\)
0.455048 + 0.890467i \(0.349622\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −3.12836 −0.269246
\(136\) 0 0
\(137\) −18.4679 −1.57782 −0.788910 0.614509i \(-0.789354\pi\)
−0.788910 + 0.614509i \(0.789354\pi\)
\(138\) 0 0
\(139\) −17.0419 −1.44547 −0.722737 0.691123i \(-0.757116\pi\)
−0.722737 + 0.691123i \(0.757116\pi\)
\(140\) 0 0
\(141\) −2.17024 −0.182768
\(142\) 0 0
\(143\) −0.106067 −0.00886975
\(144\) 0 0
\(145\) −5.37733 −0.446563
\(146\) 0 0
\(147\) −2.39868 −0.197840
\(148\) 0 0
\(149\) 15.8648 1.29970 0.649849 0.760063i \(-0.274832\pi\)
0.649849 + 0.760063i \(0.274832\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 5.41147 0.437492
\(154\) 0 0
\(155\) −8.92127 −0.716574
\(156\) 0 0
\(157\) 11.6604 0.930605 0.465302 0.885152i \(-0.345946\pi\)
0.465302 + 0.885152i \(0.345946\pi\)
\(158\) 0 0
\(159\) 2.50299 0.198500
\(160\) 0 0
\(161\) 0.866592 0.0682970
\(162\) 0 0
\(163\) 16.0797 1.25946 0.629728 0.776816i \(-0.283166\pi\)
0.629728 + 0.776816i \(0.283166\pi\)
\(164\) 0 0
\(165\) 0.162504 0.0126509
\(166\) 0 0
\(167\) 5.87258 0.454434 0.227217 0.973844i \(-0.427037\pi\)
0.227217 + 0.973844i \(0.427037\pi\)
\(168\) 0 0
\(169\) −12.8794 −0.990722
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.75103 0.589300 0.294650 0.955605i \(-0.404797\pi\)
0.294650 + 0.955605i \(0.404797\pi\)
\(174\) 0 0
\(175\) 0.810155 0.0612420
\(176\) 0 0
\(177\) 3.95811 0.297510
\(178\) 0 0
\(179\) −15.8229 −1.18266 −0.591331 0.806429i \(-0.701397\pi\)
−0.591331 + 0.806429i \(0.701397\pi\)
\(180\) 0 0
\(181\) 3.75103 0.278812 0.139406 0.990235i \(-0.455481\pi\)
0.139406 + 0.990235i \(0.455481\pi\)
\(182\) 0 0
\(183\) −3.95037 −0.292020
\(184\) 0 0
\(185\) 12.4534 0.915589
\(186\) 0 0
\(187\) −0.573978 −0.0419734
\(188\) 0 0
\(189\) 0.623608 0.0453608
\(190\) 0 0
\(191\) 4.73917 0.342914 0.171457 0.985192i \(-0.445152\pi\)
0.171457 + 0.985192i \(0.445152\pi\)
\(192\) 0 0
\(193\) 9.94862 0.716117 0.358059 0.933699i \(-0.383439\pi\)
0.358059 + 0.933699i \(0.383439\pi\)
\(194\) 0 0
\(195\) −0.184793 −0.0132333
\(196\) 0 0
\(197\) −13.7392 −0.978875 −0.489438 0.872038i \(-0.662798\pi\)
−0.489438 + 0.872038i \(0.662798\pi\)
\(198\) 0 0
\(199\) −15.1557 −1.07436 −0.537179 0.843468i \(-0.680510\pi\)
−0.537179 + 0.843468i \(0.680510\pi\)
\(200\) 0 0
\(201\) −0.125667 −0.00886388
\(202\) 0 0
\(203\) 1.07192 0.0752339
\(204\) 0 0
\(205\) −3.79292 −0.264909
\(206\) 0 0
\(207\) 8.17024 0.567871
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 12.1361 0.835483 0.417742 0.908566i \(-0.362822\pi\)
0.417742 + 0.908566i \(0.362822\pi\)
\(212\) 0 0
\(213\) −4.50299 −0.308540
\(214\) 0 0
\(215\) −1.78106 −0.121467
\(216\) 0 0
\(217\) 1.77837 0.120724
\(218\) 0 0
\(219\) 2.08141 0.140649
\(220\) 0 0
\(221\) 0.652704 0.0439056
\(222\) 0 0
\(223\) −24.0009 −1.60722 −0.803611 0.595155i \(-0.797091\pi\)
−0.803611 + 0.595155i \(0.797091\pi\)
\(224\) 0 0
\(225\) 7.63816 0.509210
\(226\) 0 0
\(227\) −15.3500 −1.01881 −0.509407 0.860526i \(-0.670135\pi\)
−0.509407 + 0.860526i \(0.670135\pi\)
\(228\) 0 0
\(229\) 6.90673 0.456409 0.228205 0.973613i \(-0.426714\pi\)
0.228205 + 0.973613i \(0.426714\pi\)
\(230\) 0 0
\(231\) −0.0323936 −0.00213134
\(232\) 0 0
\(233\) 1.53209 0.100370 0.0501852 0.998740i \(-0.484019\pi\)
0.0501852 + 0.998740i \(0.484019\pi\)
\(234\) 0 0
\(235\) −9.57398 −0.624537
\(236\) 0 0
\(237\) −3.14022 −0.203979
\(238\) 0 0
\(239\) −20.6013 −1.33259 −0.666294 0.745689i \(-0.732121\pi\)
−0.666294 + 0.745689i \(0.732121\pi\)
\(240\) 0 0
\(241\) −19.2148 −1.23774 −0.618868 0.785495i \(-0.712408\pi\)
−0.618868 + 0.785495i \(0.712408\pi\)
\(242\) 0 0
\(243\) 8.87939 0.569613
\(244\) 0 0
\(245\) −10.5817 −0.676041
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −5.75196 −0.364516
\(250\) 0 0
\(251\) 13.4192 0.847013 0.423507 0.905893i \(-0.360799\pi\)
0.423507 + 0.905893i \(0.360799\pi\)
\(252\) 0 0
\(253\) −0.866592 −0.0544822
\(254\) 0 0
\(255\) −1.00000 −0.0626224
\(256\) 0 0
\(257\) −19.2841 −1.20291 −0.601453 0.798908i \(-0.705411\pi\)
−0.601453 + 0.798908i \(0.705411\pi\)
\(258\) 0 0
\(259\) −2.48246 −0.154252
\(260\) 0 0
\(261\) 10.1061 0.625550
\(262\) 0 0
\(263\) −27.6391 −1.70430 −0.852150 0.523298i \(-0.824701\pi\)
−0.852150 + 0.523298i \(0.824701\pi\)
\(264\) 0 0
\(265\) 11.0419 0.678298
\(266\) 0 0
\(267\) 0.361844 0.0221445
\(268\) 0 0
\(269\) −7.69728 −0.469312 −0.234656 0.972079i \(-0.575396\pi\)
−0.234656 + 0.972079i \(0.575396\pi\)
\(270\) 0 0
\(271\) −4.93676 −0.299887 −0.149943 0.988695i \(-0.547909\pi\)
−0.149943 + 0.988695i \(0.547909\pi\)
\(272\) 0 0
\(273\) 0.0368366 0.00222945
\(274\) 0 0
\(275\) −0.810155 −0.0488542
\(276\) 0 0
\(277\) 1.77837 0.106852 0.0534260 0.998572i \(-0.482986\pi\)
0.0534260 + 0.998572i \(0.482986\pi\)
\(278\) 0 0
\(279\) 16.7665 1.00378
\(280\) 0 0
\(281\) 21.0205 1.25398 0.626990 0.779027i \(-0.284287\pi\)
0.626990 + 0.779027i \(0.284287\pi\)
\(282\) 0 0
\(283\) −5.26857 −0.313184 −0.156592 0.987663i \(-0.550051\pi\)
−0.156592 + 0.987663i \(0.550051\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.756082 0.0446301
\(288\) 0 0
\(289\) −13.4679 −0.792230
\(290\) 0 0
\(291\) 3.26352 0.191311
\(292\) 0 0
\(293\) 26.6459 1.55667 0.778335 0.627849i \(-0.216065\pi\)
0.778335 + 0.627849i \(0.216065\pi\)
\(294\) 0 0
\(295\) 17.4611 1.01662
\(296\) 0 0
\(297\) −0.623608 −0.0361854
\(298\) 0 0
\(299\) 0.985452 0.0569902
\(300\) 0 0
\(301\) 0.355037 0.0204640
\(302\) 0 0
\(303\) 0.859785 0.0493934
\(304\) 0 0
\(305\) −17.4270 −0.997865
\(306\) 0 0
\(307\) 2.21894 0.126642 0.0633208 0.997993i \(-0.479831\pi\)
0.0633208 + 0.997993i \(0.479831\pi\)
\(308\) 0 0
\(309\) −5.81016 −0.330528
\(310\) 0 0
\(311\) 15.6946 0.889959 0.444979 0.895541i \(-0.353211\pi\)
0.444979 + 0.895541i \(0.353211\pi\)
\(312\) 0 0
\(313\) 8.24897 0.466259 0.233130 0.972446i \(-0.425103\pi\)
0.233130 + 0.972446i \(0.425103\pi\)
\(314\) 0 0
\(315\) 1.34730 0.0759115
\(316\) 0 0
\(317\) −5.99319 −0.336611 −0.168306 0.985735i \(-0.553830\pi\)
−0.168306 + 0.985735i \(0.553830\pi\)
\(318\) 0 0
\(319\) −1.07192 −0.0600159
\(320\) 0 0
\(321\) −2.50475 −0.139801
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0.921274 0.0511031
\(326\) 0 0
\(327\) 2.24628 0.124220
\(328\) 0 0
\(329\) 1.90848 0.105218
\(330\) 0 0
\(331\) −4.95542 −0.272375 −0.136187 0.990683i \(-0.543485\pi\)
−0.136187 + 0.990683i \(0.543485\pi\)
\(332\) 0 0
\(333\) −23.4047 −1.28257
\(334\) 0 0
\(335\) −0.554378 −0.0302889
\(336\) 0 0
\(337\) 7.46379 0.406579 0.203289 0.979119i \(-0.434837\pi\)
0.203289 + 0.979119i \(0.434837\pi\)
\(338\) 0 0
\(339\) 4.69459 0.254975
\(340\) 0 0
\(341\) −1.77837 −0.0963042
\(342\) 0 0
\(343\) 4.24722 0.229328
\(344\) 0 0
\(345\) −1.50980 −0.0812849
\(346\) 0 0
\(347\) −26.3259 −1.41325 −0.706625 0.707588i \(-0.749783\pi\)
−0.706625 + 0.707588i \(0.749783\pi\)
\(348\) 0 0
\(349\) 11.0000 0.588817 0.294408 0.955680i \(-0.404877\pi\)
0.294408 + 0.955680i \(0.404877\pi\)
\(350\) 0 0
\(351\) 0.709141 0.0378511
\(352\) 0 0
\(353\) 3.16756 0.168592 0.0842960 0.996441i \(-0.473136\pi\)
0.0842960 + 0.996441i \(0.473136\pi\)
\(354\) 0 0
\(355\) −19.8648 −1.05432
\(356\) 0 0
\(357\) 0.199340 0.0105502
\(358\) 0 0
\(359\) 25.1165 1.32560 0.662799 0.748797i \(-0.269368\pi\)
0.662799 + 0.748797i \(0.269368\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −3.78787 −0.198811
\(364\) 0 0
\(365\) 9.18210 0.480613
\(366\) 0 0
\(367\) −20.8161 −1.08659 −0.543297 0.839541i \(-0.682824\pi\)
−0.543297 + 0.839541i \(0.682824\pi\)
\(368\) 0 0
\(369\) 7.12836 0.371087
\(370\) 0 0
\(371\) −2.20110 −0.114275
\(372\) 0 0
\(373\) 1.90673 0.0987266 0.0493633 0.998781i \(-0.484281\pi\)
0.0493633 + 0.998781i \(0.484281\pi\)
\(374\) 0 0
\(375\) −4.07192 −0.210273
\(376\) 0 0
\(377\) 1.21894 0.0627786
\(378\) 0 0
\(379\) −23.7743 −1.22120 −0.610601 0.791939i \(-0.709072\pi\)
−0.610601 + 0.791939i \(0.709072\pi\)
\(380\) 0 0
\(381\) 3.45512 0.177011
\(382\) 0 0
\(383\) 1.99319 0.101847 0.0509237 0.998703i \(-0.483783\pi\)
0.0509237 + 0.998703i \(0.483783\pi\)
\(384\) 0 0
\(385\) −0.142903 −0.00728303
\(386\) 0 0
\(387\) 3.34730 0.170153
\(388\) 0 0
\(389\) 1.38144 0.0700420 0.0350210 0.999387i \(-0.488850\pi\)
0.0350210 + 0.999387i \(0.488850\pi\)
\(390\) 0 0
\(391\) 5.33275 0.269689
\(392\) 0 0
\(393\) 3.61762 0.182485
\(394\) 0 0
\(395\) −13.8530 −0.697019
\(396\) 0 0
\(397\) −16.0077 −0.803405 −0.401703 0.915770i \(-0.631581\pi\)
−0.401703 + 0.915770i \(0.631581\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.15982 −0.407482 −0.203741 0.979025i \(-0.565310\pi\)
−0.203741 + 0.979025i \(0.565310\pi\)
\(402\) 0 0
\(403\) 2.02229 0.100737
\(404\) 0 0
\(405\) 12.1480 0.603637
\(406\) 0 0
\(407\) 2.48246 0.123051
\(408\) 0 0
\(409\) 20.1753 0.997604 0.498802 0.866716i \(-0.333773\pi\)
0.498802 + 0.866716i \(0.333773\pi\)
\(410\) 0 0
\(411\) −6.41384 −0.316371
\(412\) 0 0
\(413\) −3.48070 −0.171274
\(414\) 0 0
\(415\) −25.3746 −1.24559
\(416\) 0 0
\(417\) −5.91859 −0.289834
\(418\) 0 0
\(419\) −10.7784 −0.526558 −0.263279 0.964720i \(-0.584804\pi\)
−0.263279 + 0.964720i \(0.584804\pi\)
\(420\) 0 0
\(421\) 20.9837 1.02268 0.511341 0.859378i \(-0.329149\pi\)
0.511341 + 0.859378i \(0.329149\pi\)
\(422\) 0 0
\(423\) 17.9932 0.874859
\(424\) 0 0
\(425\) 4.98545 0.241830
\(426\) 0 0
\(427\) 3.47390 0.168114
\(428\) 0 0
\(429\) −0.0368366 −0.00177849
\(430\) 0 0
\(431\) 18.2053 0.876920 0.438460 0.898751i \(-0.355524\pi\)
0.438460 + 0.898751i \(0.355524\pi\)
\(432\) 0 0
\(433\) −35.6023 −1.71094 −0.855468 0.517856i \(-0.826730\pi\)
−0.855468 + 0.517856i \(0.826730\pi\)
\(434\) 0 0
\(435\) −1.86753 −0.0895410
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −12.7706 −0.609509 −0.304754 0.952431i \(-0.598574\pi\)
−0.304754 + 0.952431i \(0.598574\pi\)
\(440\) 0 0
\(441\) 19.8871 0.947006
\(442\) 0 0
\(443\) 25.5107 1.21205 0.606026 0.795445i \(-0.292763\pi\)
0.606026 + 0.795445i \(0.292763\pi\)
\(444\) 0 0
\(445\) 1.59627 0.0756703
\(446\) 0 0
\(447\) 5.50980 0.260605
\(448\) 0 0
\(449\) 30.4783 1.43836 0.719181 0.694823i \(-0.244517\pi\)
0.719181 + 0.694823i \(0.244517\pi\)
\(450\) 0 0
\(451\) −0.756082 −0.0356025
\(452\) 0 0
\(453\) 5.55674 0.261078
\(454\) 0 0
\(455\) 0.162504 0.00761830
\(456\) 0 0
\(457\) 17.2608 0.807428 0.403714 0.914885i \(-0.367719\pi\)
0.403714 + 0.914885i \(0.367719\pi\)
\(458\) 0 0
\(459\) 3.83750 0.179119
\(460\) 0 0
\(461\) 30.9522 1.44159 0.720795 0.693149i \(-0.243777\pi\)
0.720795 + 0.693149i \(0.243777\pi\)
\(462\) 0 0
\(463\) 30.2472 1.40571 0.702854 0.711334i \(-0.251909\pi\)
0.702854 + 0.711334i \(0.251909\pi\)
\(464\) 0 0
\(465\) −3.09833 −0.143681
\(466\) 0 0
\(467\) 22.1771 1.02623 0.513116 0.858319i \(-0.328491\pi\)
0.513116 + 0.858319i \(0.328491\pi\)
\(468\) 0 0
\(469\) 0.110510 0.00510287
\(470\) 0 0
\(471\) 4.04963 0.186597
\(472\) 0 0
\(473\) −0.355037 −0.0163246
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −20.7520 −0.950167
\(478\) 0 0
\(479\) 19.4584 0.889078 0.444539 0.895760i \(-0.353368\pi\)
0.444539 + 0.895760i \(0.353368\pi\)
\(480\) 0 0
\(481\) −2.82295 −0.128715
\(482\) 0 0
\(483\) 0.300964 0.0136943
\(484\) 0 0
\(485\) 14.3969 0.653731
\(486\) 0 0
\(487\) 30.2864 1.37241 0.686204 0.727409i \(-0.259276\pi\)
0.686204 + 0.727409i \(0.259276\pi\)
\(488\) 0 0
\(489\) 5.58441 0.252536
\(490\) 0 0
\(491\) 26.5202 1.19684 0.598421 0.801182i \(-0.295795\pi\)
0.598421 + 0.801182i \(0.295795\pi\)
\(492\) 0 0
\(493\) 6.59627 0.297081
\(494\) 0 0
\(495\) −1.34730 −0.0605565
\(496\) 0 0
\(497\) 3.95987 0.177624
\(498\) 0 0
\(499\) −22.3259 −0.999446 −0.499723 0.866185i \(-0.666565\pi\)
−0.499723 + 0.866185i \(0.666565\pi\)
\(500\) 0 0
\(501\) 2.03952 0.0911193
\(502\) 0 0
\(503\) 15.6536 0.697961 0.348981 0.937130i \(-0.386528\pi\)
0.348981 + 0.937130i \(0.386528\pi\)
\(504\) 0 0
\(505\) 3.79292 0.168783
\(506\) 0 0
\(507\) −4.47296 −0.198651
\(508\) 0 0
\(509\) −3.91716 −0.173625 −0.0868124 0.996225i \(-0.527668\pi\)
−0.0868124 + 0.996225i \(0.527668\pi\)
\(510\) 0 0
\(511\) −1.83036 −0.0809706
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −25.6313 −1.12945
\(516\) 0 0
\(517\) −1.90848 −0.0839349
\(518\) 0 0
\(519\) 2.69190 0.118161
\(520\) 0 0
\(521\) 20.5175 0.898890 0.449445 0.893308i \(-0.351622\pi\)
0.449445 + 0.893308i \(0.351622\pi\)
\(522\) 0 0
\(523\) 4.85978 0.212504 0.106252 0.994339i \(-0.466115\pi\)
0.106252 + 0.994339i \(0.466115\pi\)
\(524\) 0 0
\(525\) 0.281364 0.0122797
\(526\) 0 0
\(527\) 10.9436 0.476709
\(528\) 0 0
\(529\) −14.9486 −0.649940
\(530\) 0 0
\(531\) −32.8161 −1.42410
\(532\) 0 0
\(533\) 0.859785 0.0372414
\(534\) 0 0
\(535\) −11.0496 −0.477717
\(536\) 0 0
\(537\) −5.49525 −0.237138
\(538\) 0 0
\(539\) −2.10936 −0.0908568
\(540\) 0 0
\(541\) 34.0624 1.46446 0.732229 0.681059i \(-0.238480\pi\)
0.732229 + 0.681059i \(0.238480\pi\)
\(542\) 0 0
\(543\) 1.30272 0.0559050
\(544\) 0 0
\(545\) 9.90941 0.424473
\(546\) 0 0
\(547\) −40.2285 −1.72005 −0.860024 0.510253i \(-0.829552\pi\)
−0.860024 + 0.510253i \(0.829552\pi\)
\(548\) 0 0
\(549\) 32.7520 1.39782
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 2.76146 0.117429
\(554\) 0 0
\(555\) 4.32501 0.183586
\(556\) 0 0
\(557\) 19.9540 0.845478 0.422739 0.906252i \(-0.361069\pi\)
0.422739 + 0.906252i \(0.361069\pi\)
\(558\) 0 0
\(559\) 0.403733 0.0170761
\(560\) 0 0
\(561\) −0.199340 −0.00841616
\(562\) 0 0
\(563\) −14.3054 −0.602901 −0.301451 0.953482i \(-0.597471\pi\)
−0.301451 + 0.953482i \(0.597471\pi\)
\(564\) 0 0
\(565\) 20.7101 0.871279
\(566\) 0 0
\(567\) −2.42158 −0.101697
\(568\) 0 0
\(569\) −20.3851 −0.854586 −0.427293 0.904113i \(-0.640533\pi\)
−0.427293 + 0.904113i \(0.640533\pi\)
\(570\) 0 0
\(571\) −32.9377 −1.37840 −0.689200 0.724571i \(-0.742038\pi\)
−0.689200 + 0.724571i \(0.742038\pi\)
\(572\) 0 0
\(573\) 1.64590 0.0687583
\(574\) 0 0
\(575\) 7.52704 0.313899
\(576\) 0 0
\(577\) 44.1052 1.83613 0.918063 0.396435i \(-0.129753\pi\)
0.918063 + 0.396435i \(0.129753\pi\)
\(578\) 0 0
\(579\) 3.45512 0.143590
\(580\) 0 0
\(581\) 5.05819 0.209849
\(582\) 0 0
\(583\) 2.20110 0.0911600
\(584\) 0 0
\(585\) 1.53209 0.0633441
\(586\) 0 0
\(587\) 6.50568 0.268518 0.134259 0.990946i \(-0.457135\pi\)
0.134259 + 0.990946i \(0.457135\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −4.77156 −0.196276
\(592\) 0 0
\(593\) 12.7929 0.525342 0.262671 0.964885i \(-0.415397\pi\)
0.262671 + 0.964885i \(0.415397\pi\)
\(594\) 0 0
\(595\) 0.879385 0.0360513
\(596\) 0 0
\(597\) −5.26352 −0.215421
\(598\) 0 0
\(599\) −18.2645 −0.746265 −0.373133 0.927778i \(-0.621716\pi\)
−0.373133 + 0.927778i \(0.621716\pi\)
\(600\) 0 0
\(601\) −19.9067 −0.812012 −0.406006 0.913870i \(-0.633079\pi\)
−0.406006 + 0.913870i \(0.633079\pi\)
\(602\) 0 0
\(603\) 1.04189 0.0424290
\(604\) 0 0
\(605\) −16.7101 −0.679361
\(606\) 0 0
\(607\) 22.5526 0.915383 0.457691 0.889111i \(-0.348676\pi\)
0.457691 + 0.889111i \(0.348676\pi\)
\(608\) 0 0
\(609\) 0.372273 0.0150853
\(610\) 0 0
\(611\) 2.17024 0.0877987
\(612\) 0 0
\(613\) −44.7948 −1.80924 −0.904622 0.426214i \(-0.859847\pi\)
−0.904622 + 0.426214i \(0.859847\pi\)
\(614\) 0 0
\(615\) −1.31727 −0.0531173
\(616\) 0 0
\(617\) 25.2449 1.01632 0.508160 0.861263i \(-0.330326\pi\)
0.508160 + 0.861263i \(0.330326\pi\)
\(618\) 0 0
\(619\) 35.1147 1.41138 0.705690 0.708520i \(-0.250637\pi\)
0.705690 + 0.708520i \(0.250637\pi\)
\(620\) 0 0
\(621\) 5.79385 0.232499
\(622\) 0 0
\(623\) −0.318201 −0.0127484
\(624\) 0 0
\(625\) −4.69965 −0.187986
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.2763 −0.609106
\(630\) 0 0
\(631\) 33.8435 1.34729 0.673644 0.739056i \(-0.264728\pi\)
0.673644 + 0.739056i \(0.264728\pi\)
\(632\) 0 0
\(633\) 4.21482 0.167524
\(634\) 0 0
\(635\) 15.2422 0.604867
\(636\) 0 0
\(637\) 2.39868 0.0950392
\(638\) 0 0
\(639\) 37.3337 1.47690
\(640\) 0 0
\(641\) −23.1198 −0.913177 −0.456588 0.889678i \(-0.650929\pi\)
−0.456588 + 0.889678i \(0.650929\pi\)
\(642\) 0 0
\(643\) 15.0811 0.594740 0.297370 0.954762i \(-0.403890\pi\)
0.297370 + 0.954762i \(0.403890\pi\)
\(644\) 0 0
\(645\) −0.618555 −0.0243556
\(646\) 0 0
\(647\) 25.4783 1.00166 0.500828 0.865547i \(-0.333029\pi\)
0.500828 + 0.865547i \(0.333029\pi\)
\(648\) 0 0
\(649\) 3.48070 0.136630
\(650\) 0 0
\(651\) 0.617622 0.0242065
\(652\) 0 0
\(653\) 34.0351 1.33190 0.665948 0.745998i \(-0.268027\pi\)
0.665948 + 0.745998i \(0.268027\pi\)
\(654\) 0 0
\(655\) 15.9590 0.623571
\(656\) 0 0
\(657\) −17.2567 −0.673248
\(658\) 0 0
\(659\) −25.2540 −0.983757 −0.491879 0.870664i \(-0.663690\pi\)
−0.491879 + 0.870664i \(0.663690\pi\)
\(660\) 0 0
\(661\) 3.85710 0.150024 0.0750118 0.997183i \(-0.476101\pi\)
0.0750118 + 0.997183i \(0.476101\pi\)
\(662\) 0 0
\(663\) 0.226682 0.00880358
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.95904 0.385616
\(668\) 0 0
\(669\) −8.33544 −0.322267
\(670\) 0 0
\(671\) −3.47390 −0.134108
\(672\) 0 0
\(673\) 5.25671 0.202631 0.101316 0.994854i \(-0.467695\pi\)
0.101316 + 0.994854i \(0.467695\pi\)
\(674\) 0 0
\(675\) 5.41653 0.208482
\(676\) 0 0
\(677\) 41.1985 1.58339 0.791694 0.610918i \(-0.209200\pi\)
0.791694 + 0.610918i \(0.209200\pi\)
\(678\) 0 0
\(679\) −2.86989 −0.110136
\(680\) 0 0
\(681\) −5.33099 −0.204284
\(682\) 0 0
\(683\) −45.6459 −1.74659 −0.873296 0.487190i \(-0.838022\pi\)
−0.873296 + 0.487190i \(0.838022\pi\)
\(684\) 0 0
\(685\) −28.2945 −1.08108
\(686\) 0 0
\(687\) 2.39868 0.0915154
\(688\) 0 0
\(689\) −2.50299 −0.0953564
\(690\) 0 0
\(691\) 14.9864 0.570109 0.285054 0.958511i \(-0.407988\pi\)
0.285054 + 0.958511i \(0.407988\pi\)
\(692\) 0 0
\(693\) 0.268571 0.0102022
\(694\) 0 0
\(695\) −26.1097 −0.990397
\(696\) 0 0
\(697\) 4.65270 0.176234
\(698\) 0 0
\(699\) 0.532089 0.0201255
\(700\) 0 0
\(701\) 3.34224 0.126235 0.0631174 0.998006i \(-0.479896\pi\)
0.0631174 + 0.998006i \(0.479896\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −3.32501 −0.125227
\(706\) 0 0
\(707\) −0.756082 −0.0284354
\(708\) 0 0
\(709\) −18.7769 −0.705183 −0.352591 0.935777i \(-0.614699\pi\)
−0.352591 + 0.935777i \(0.614699\pi\)
\(710\) 0 0
\(711\) 26.0351 0.976392
\(712\) 0 0
\(713\) 16.5226 0.618776
\(714\) 0 0
\(715\) −0.162504 −0.00607730
\(716\) 0 0
\(717\) −7.15476 −0.267200
\(718\) 0 0
\(719\) −31.6973 −1.18211 −0.591055 0.806632i \(-0.701288\pi\)
−0.591055 + 0.806632i \(0.701288\pi\)
\(720\) 0 0
\(721\) 5.10936 0.190283
\(722\) 0 0
\(723\) −6.67324 −0.248180
\(724\) 0 0
\(725\) 9.31046 0.345782
\(726\) 0 0
\(727\) −20.2558 −0.751245 −0.375623 0.926773i \(-0.622571\pi\)
−0.375623 + 0.926773i \(0.622571\pi\)
\(728\) 0 0
\(729\) −20.7033 −0.766788
\(730\) 0 0
\(731\) 2.18479 0.0808075
\(732\) 0 0
\(733\) 0.813453 0.0300456 0.0150228 0.999887i \(-0.495218\pi\)
0.0150228 + 0.999887i \(0.495218\pi\)
\(734\) 0 0
\(735\) −3.67499 −0.135554
\(736\) 0 0
\(737\) −0.110510 −0.00407068
\(738\) 0 0
\(739\) −39.9685 −1.47027 −0.735133 0.677923i \(-0.762880\pi\)
−0.735133 + 0.677923i \(0.762880\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −7.89487 −0.289635 −0.144817 0.989458i \(-0.546259\pi\)
−0.144817 + 0.989458i \(0.546259\pi\)
\(744\) 0 0
\(745\) 24.3063 0.890515
\(746\) 0 0
\(747\) 47.6887 1.74484
\(748\) 0 0
\(749\) 2.20264 0.0804826
\(750\) 0 0
\(751\) 20.6031 0.751817 0.375908 0.926657i \(-0.377331\pi\)
0.375908 + 0.926657i \(0.377331\pi\)
\(752\) 0 0
\(753\) 4.66044 0.169836
\(754\) 0 0
\(755\) 24.5134 0.892135
\(756\) 0 0
\(757\) −26.9445 −0.979314 −0.489657 0.871915i \(-0.662878\pi\)
−0.489657 + 0.871915i \(0.662878\pi\)
\(758\) 0 0
\(759\) −0.300964 −0.0109243
\(760\) 0 0
\(761\) 7.38919 0.267858 0.133929 0.990991i \(-0.457241\pi\)
0.133929 + 0.990991i \(0.457241\pi\)
\(762\) 0 0
\(763\) −1.97535 −0.0715124
\(764\) 0 0
\(765\) 8.29086 0.299757
\(766\) 0 0
\(767\) −3.95811 −0.142919
\(768\) 0 0
\(769\) −15.7510 −0.567997 −0.283998 0.958825i \(-0.591661\pi\)
−0.283998 + 0.958825i \(0.591661\pi\)
\(770\) 0 0
\(771\) −6.69728 −0.241197
\(772\) 0 0
\(773\) 1.78106 0.0640602 0.0320301 0.999487i \(-0.489803\pi\)
0.0320301 + 0.999487i \(0.489803\pi\)
\(774\) 0 0
\(775\) 15.4466 0.554857
\(776\) 0 0
\(777\) −0.862149 −0.0309294
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −3.95987 −0.141695
\(782\) 0 0
\(783\) 7.16662 0.256114
\(784\) 0 0
\(785\) 17.8648 0.637623
\(786\) 0 0
\(787\) 28.7689 1.02550 0.512750 0.858538i \(-0.328627\pi\)
0.512750 + 0.858538i \(0.328627\pi\)
\(788\) 0 0
\(789\) −9.59896 −0.341732
\(790\) 0 0
\(791\) −4.12836 −0.146787
\(792\) 0 0
\(793\) 3.95037 0.140282
\(794\) 0 0
\(795\) 3.83481 0.136007
\(796\) 0 0
\(797\) −44.4944 −1.57607 −0.788037 0.615628i \(-0.788902\pi\)
−0.788037 + 0.615628i \(0.788902\pi\)
\(798\) 0 0
\(799\) 11.7442 0.415481
\(800\) 0 0
\(801\) −3.00000 −0.106000
\(802\) 0 0
\(803\) 1.83036 0.0645922
\(804\) 0 0
\(805\) 1.32770 0.0467951
\(806\) 0 0
\(807\) −2.67324 −0.0941024
\(808\) 0 0
\(809\) 34.2336 1.20359 0.601795 0.798651i \(-0.294453\pi\)
0.601795 + 0.798651i \(0.294453\pi\)
\(810\) 0 0
\(811\) −45.7093 −1.60507 −0.802534 0.596606i \(-0.796516\pi\)
−0.802534 + 0.596606i \(0.796516\pi\)
\(812\) 0 0
\(813\) −1.71452 −0.0601307
\(814\) 0 0
\(815\) 24.6355 0.862943
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −0.305407 −0.0106718
\(820\) 0 0
\(821\) 44.5090 1.55337 0.776687 0.629887i \(-0.216899\pi\)
0.776687 + 0.629887i \(0.216899\pi\)
\(822\) 0 0
\(823\) −47.4579 −1.65428 −0.827140 0.561997i \(-0.810033\pi\)
−0.827140 + 0.561997i \(0.810033\pi\)
\(824\) 0 0
\(825\) −0.281364 −0.00979583
\(826\) 0 0
\(827\) −38.9454 −1.35427 −0.677133 0.735861i \(-0.736778\pi\)
−0.677133 + 0.735861i \(0.736778\pi\)
\(828\) 0 0
\(829\) −19.7392 −0.685570 −0.342785 0.939414i \(-0.611370\pi\)
−0.342785 + 0.939414i \(0.611370\pi\)
\(830\) 0 0
\(831\) 0.617622 0.0214251
\(832\) 0 0
\(833\) 12.9804 0.449744
\(834\) 0 0
\(835\) 8.99731 0.311365
\(836\) 0 0
\(837\) 11.8898 0.410972
\(838\) 0 0
\(839\) 51.2458 1.76920 0.884600 0.466350i \(-0.154431\pi\)
0.884600 + 0.466350i \(0.154431\pi\)
\(840\) 0 0
\(841\) −16.6813 −0.575217
\(842\) 0 0
\(843\) 7.30035 0.251438
\(844\) 0 0
\(845\) −19.7324 −0.678814
\(846\) 0 0
\(847\) 3.33099 0.114454
\(848\) 0 0
\(849\) −1.82976 −0.0627970
\(850\) 0 0
\(851\) −23.0642 −0.790630
\(852\) 0 0
\(853\) 3.11650 0.106707 0.0533534 0.998576i \(-0.483009\pi\)
0.0533534 + 0.998576i \(0.483009\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −16.8206 −0.574580 −0.287290 0.957844i \(-0.592754\pi\)
−0.287290 + 0.957844i \(0.592754\pi\)
\(858\) 0 0
\(859\) −40.1685 −1.37053 −0.685266 0.728293i \(-0.740314\pi\)
−0.685266 + 0.728293i \(0.740314\pi\)
\(860\) 0 0
\(861\) 0.262585 0.00894886
\(862\) 0 0
\(863\) 1.48784 0.0506465 0.0253233 0.999679i \(-0.491938\pi\)
0.0253233 + 0.999679i \(0.491938\pi\)
\(864\) 0 0
\(865\) 11.8753 0.403771
\(866\) 0 0
\(867\) −4.67736 −0.158851
\(868\) 0 0
\(869\) −2.76146 −0.0936761
\(870\) 0 0
\(871\) 0.125667 0.00425807
\(872\) 0 0
\(873\) −27.0574 −0.915753
\(874\) 0 0
\(875\) 3.58079 0.121053
\(876\) 0 0
\(877\) −14.1607 −0.478175 −0.239087 0.970998i \(-0.576848\pi\)
−0.239087 + 0.970998i \(0.576848\pi\)
\(878\) 0 0
\(879\) 9.25402 0.312130
\(880\) 0 0
\(881\) 17.7000 0.596327 0.298164 0.954515i \(-0.403626\pi\)
0.298164 + 0.954515i \(0.403626\pi\)
\(882\) 0 0
\(883\) 16.4712 0.554300 0.277150 0.960827i \(-0.410610\pi\)
0.277150 + 0.960827i \(0.410610\pi\)
\(884\) 0 0
\(885\) 6.06418 0.203845
\(886\) 0 0
\(887\) 49.1513 1.65034 0.825169 0.564886i \(-0.191080\pi\)
0.825169 + 0.564886i \(0.191080\pi\)
\(888\) 0 0
\(889\) −3.03838 −0.101904
\(890\) 0 0
\(891\) 2.42158 0.0811259
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −24.2422 −0.810326
\(896\) 0 0
\(897\) 0.342244 0.0114272
\(898\) 0 0
\(899\) 20.4374 0.681625
\(900\) 0 0
\(901\) −13.5449 −0.451245
\(902\) 0 0
\(903\) 0.123303 0.00410327
\(904\) 0 0
\(905\) 5.74691 0.191034
\(906\) 0 0
\(907\) 25.6177 0.850623 0.425311 0.905047i \(-0.360165\pi\)
0.425311 + 0.905047i \(0.360165\pi\)
\(908\) 0 0
\(909\) −7.12836 −0.236433
\(910\) 0 0
\(911\) 39.3809 1.30475 0.652375 0.757897i \(-0.273773\pi\)
0.652375 + 0.757897i \(0.273773\pi\)
\(912\) 0 0
\(913\) −5.05819 −0.167402
\(914\) 0 0
\(915\) −6.05232 −0.200083
\(916\) 0 0
\(917\) −3.18128 −0.105055
\(918\) 0 0
\(919\) 43.2121 1.42544 0.712718 0.701450i \(-0.247464\pi\)
0.712718 + 0.701450i \(0.247464\pi\)
\(920\) 0 0
\(921\) 0.770630 0.0253931
\(922\) 0 0
\(923\) 4.50299 0.148218
\(924\) 0 0
\(925\) −21.5621 −0.708958
\(926\) 0 0
\(927\) 48.1712 1.58215
\(928\) 0 0
\(929\) 14.9691 0.491122 0.245561 0.969381i \(-0.421028\pi\)
0.245561 + 0.969381i \(0.421028\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 5.45067 0.178447
\(934\) 0 0
\(935\) −0.879385 −0.0287590
\(936\) 0 0
\(937\) −52.1661 −1.70419 −0.852097 0.523385i \(-0.824669\pi\)
−0.852097 + 0.523385i \(0.824669\pi\)
\(938\) 0 0
\(939\) 2.86484 0.0934904
\(940\) 0 0
\(941\) 7.04282 0.229589 0.114795 0.993389i \(-0.463379\pi\)
0.114795 + 0.993389i \(0.463379\pi\)
\(942\) 0 0
\(943\) 7.02465 0.228754
\(944\) 0 0
\(945\) 0.955423 0.0310799
\(946\) 0 0
\(947\) 15.8785 0.515980 0.257990 0.966148i \(-0.416940\pi\)
0.257990 + 0.966148i \(0.416940\pi\)
\(948\) 0 0
\(949\) −2.08141 −0.0675656
\(950\) 0 0
\(951\) −2.08141 −0.0674945
\(952\) 0 0
\(953\) −7.77568 −0.251879 −0.125940 0.992038i \(-0.540195\pi\)
−0.125940 + 0.992038i \(0.540195\pi\)
\(954\) 0 0
\(955\) 7.26083 0.234955
\(956\) 0 0
\(957\) −0.372273 −0.0120339
\(958\) 0 0
\(959\) 5.64023 0.182133
\(960\) 0 0
\(961\) 2.90673 0.0937654
\(962\) 0 0
\(963\) 20.7665 0.669191
\(964\) 0 0
\(965\) 15.2422 0.490663
\(966\) 0 0
\(967\) −47.5645 −1.52957 −0.764785 0.644285i \(-0.777155\pi\)
−0.764785 + 0.644285i \(0.777155\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.76651 −0.185056 −0.0925281 0.995710i \(-0.529495\pi\)
−0.0925281 + 0.995710i \(0.529495\pi\)
\(972\) 0 0
\(973\) 5.20472 0.166856
\(974\) 0 0
\(975\) 0.319955 0.0102468
\(976\) 0 0
\(977\) −19.5716 −0.626151 −0.313076 0.949728i \(-0.601359\pi\)
−0.313076 + 0.949728i \(0.601359\pi\)
\(978\) 0 0
\(979\) 0.318201 0.0101697
\(980\) 0 0
\(981\) −18.6236 −0.594606
\(982\) 0 0
\(983\) 39.3800 1.25603 0.628014 0.778202i \(-0.283868\pi\)
0.628014 + 0.778202i \(0.283868\pi\)
\(984\) 0 0
\(985\) −21.0496 −0.670697
\(986\) 0 0
\(987\) 0.662809 0.0210974
\(988\) 0 0
\(989\) 3.29860 0.104889
\(990\) 0 0
\(991\) 32.1999 1.02287 0.511433 0.859323i \(-0.329115\pi\)
0.511433 + 0.859323i \(0.329115\pi\)
\(992\) 0 0
\(993\) −1.72100 −0.0546143
\(994\) 0 0
\(995\) −23.2199 −0.736120
\(996\) 0 0
\(997\) −12.7159 −0.402718 −0.201359 0.979517i \(-0.564536\pi\)
−0.201359 + 0.979517i \(0.564536\pi\)
\(998\) 0 0
\(999\) −16.5972 −0.525112
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.p.1.2 3
4.3 odd 2 5776.2.a.bm.1.2 3
19.2 odd 18 152.2.q.a.137.1 yes 6
19.10 odd 18 152.2.q.a.81.1 6
19.18 odd 2 2888.2.a.q.1.2 3
76.59 even 18 304.2.u.d.289.1 6
76.67 even 18 304.2.u.d.81.1 6
76.75 even 2 5776.2.a.bl.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.q.a.81.1 6 19.10 odd 18
152.2.q.a.137.1 yes 6 19.2 odd 18
304.2.u.d.81.1 6 76.67 even 18
304.2.u.d.289.1 6 76.59 even 18
2888.2.a.p.1.2 3 1.1 even 1 trivial
2888.2.a.q.1.2 3 19.18 odd 2
5776.2.a.bl.1.2 3 76.75 even 2
5776.2.a.bm.1.2 3 4.3 odd 2