Properties

Label 2888.2.a.m.1.2
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,0,-3,0,-6,0,12,0,-6,0,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.347296\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.18479 q^{3} +0.879385 q^{5} -1.65270 q^{7} +1.77332 q^{9} -3.53209 q^{11} +4.94356 q^{13} -1.92127 q^{15} +2.59627 q^{17} +3.61081 q^{21} -4.82295 q^{23} -4.22668 q^{25} +2.68004 q^{27} +6.87939 q^{29} -2.04189 q^{31} +7.71688 q^{33} -1.45336 q^{35} +5.18479 q^{37} -10.8007 q^{39} -1.73648 q^{41} +7.98545 q^{43} +1.55943 q^{45} +2.92127 q^{47} -4.26857 q^{49} -5.67230 q^{51} -12.6800 q^{53} -3.10607 q^{55} +7.58172 q^{59} -11.1284 q^{61} -2.93077 q^{63} +4.34730 q^{65} -16.0993 q^{67} +10.5371 q^{69} +13.5621 q^{71} +4.73917 q^{73} +9.23442 q^{75} +5.83750 q^{77} +1.21894 q^{79} -11.1753 q^{81} -5.87939 q^{83} +2.28312 q^{85} -15.0300 q^{87} +10.2909 q^{89} -8.17024 q^{91} +4.46110 q^{93} +11.4534 q^{97} -6.26352 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 3 q^{5} - 6 q^{7} + 12 q^{9} - 6 q^{11} + 3 q^{15} - 6 q^{17} + 15 q^{21} + 6 q^{23} - 6 q^{25} - 12 q^{27} + 15 q^{29} - 3 q^{31} + 15 q^{33} + 9 q^{35} + 12 q^{37} - 18 q^{39} + 6 q^{43}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.18479 −1.26139 −0.630695 0.776031i \(-0.717230\pi\)
−0.630695 + 0.776031i \(0.717230\pi\)
\(4\) 0 0
\(5\) 0.879385 0.393273 0.196637 0.980476i \(-0.436998\pi\)
0.196637 + 0.980476i \(0.436998\pi\)
\(6\) 0 0
\(7\) −1.65270 −0.624663 −0.312332 0.949973i \(-0.601110\pi\)
−0.312332 + 0.949973i \(0.601110\pi\)
\(8\) 0 0
\(9\) 1.77332 0.591106
\(10\) 0 0
\(11\) −3.53209 −1.06496 −0.532482 0.846441i \(-0.678741\pi\)
−0.532482 + 0.846441i \(0.678741\pi\)
\(12\) 0 0
\(13\) 4.94356 1.37110 0.685549 0.728027i \(-0.259562\pi\)
0.685549 + 0.728027i \(0.259562\pi\)
\(14\) 0 0
\(15\) −1.92127 −0.496071
\(16\) 0 0
\(17\) 2.59627 0.629687 0.314844 0.949144i \(-0.398048\pi\)
0.314844 + 0.949144i \(0.398048\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 3.61081 0.787944
\(22\) 0 0
\(23\) −4.82295 −1.00565 −0.502827 0.864387i \(-0.667707\pi\)
−0.502827 + 0.864387i \(0.667707\pi\)
\(24\) 0 0
\(25\) −4.22668 −0.845336
\(26\) 0 0
\(27\) 2.68004 0.515775
\(28\) 0 0
\(29\) 6.87939 1.27747 0.638735 0.769427i \(-0.279458\pi\)
0.638735 + 0.769427i \(0.279458\pi\)
\(30\) 0 0
\(31\) −2.04189 −0.366734 −0.183367 0.983045i \(-0.558700\pi\)
−0.183367 + 0.983045i \(0.558700\pi\)
\(32\) 0 0
\(33\) 7.71688 1.34334
\(34\) 0 0
\(35\) −1.45336 −0.245663
\(36\) 0 0
\(37\) 5.18479 0.852375 0.426187 0.904635i \(-0.359856\pi\)
0.426187 + 0.904635i \(0.359856\pi\)
\(38\) 0 0
\(39\) −10.8007 −1.72949
\(40\) 0 0
\(41\) −1.73648 −0.271193 −0.135596 0.990764i \(-0.543295\pi\)
−0.135596 + 0.990764i \(0.543295\pi\)
\(42\) 0 0
\(43\) 7.98545 1.21777 0.608885 0.793258i \(-0.291617\pi\)
0.608885 + 0.793258i \(0.291617\pi\)
\(44\) 0 0
\(45\) 1.55943 0.232466
\(46\) 0 0
\(47\) 2.92127 0.426112 0.213056 0.977040i \(-0.431658\pi\)
0.213056 + 0.977040i \(0.431658\pi\)
\(48\) 0 0
\(49\) −4.26857 −0.609796
\(50\) 0 0
\(51\) −5.67230 −0.794281
\(52\) 0 0
\(53\) −12.6800 −1.74174 −0.870869 0.491515i \(-0.836443\pi\)
−0.870869 + 0.491515i \(0.836443\pi\)
\(54\) 0 0
\(55\) −3.10607 −0.418822
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.58172 0.987056 0.493528 0.869730i \(-0.335707\pi\)
0.493528 + 0.869730i \(0.335707\pi\)
\(60\) 0 0
\(61\) −11.1284 −1.42484 −0.712420 0.701753i \(-0.752401\pi\)
−0.712420 + 0.701753i \(0.752401\pi\)
\(62\) 0 0
\(63\) −2.93077 −0.369242
\(64\) 0 0
\(65\) 4.34730 0.539216
\(66\) 0 0
\(67\) −16.0993 −1.96684 −0.983419 0.181349i \(-0.941954\pi\)
−0.983419 + 0.181349i \(0.941954\pi\)
\(68\) 0 0
\(69\) 10.5371 1.26852
\(70\) 0 0
\(71\) 13.5621 1.60953 0.804764 0.593595i \(-0.202292\pi\)
0.804764 + 0.593595i \(0.202292\pi\)
\(72\) 0 0
\(73\) 4.73917 0.554678 0.277339 0.960772i \(-0.410548\pi\)
0.277339 + 0.960772i \(0.410548\pi\)
\(74\) 0 0
\(75\) 9.23442 1.06630
\(76\) 0 0
\(77\) 5.83750 0.665244
\(78\) 0 0
\(79\) 1.21894 0.137142 0.0685708 0.997646i \(-0.478156\pi\)
0.0685708 + 0.997646i \(0.478156\pi\)
\(80\) 0 0
\(81\) −11.1753 −1.24170
\(82\) 0 0
\(83\) −5.87939 −0.645346 −0.322673 0.946510i \(-0.604581\pi\)
−0.322673 + 0.946510i \(0.604581\pi\)
\(84\) 0 0
\(85\) 2.28312 0.247639
\(86\) 0 0
\(87\) −15.0300 −1.61139
\(88\) 0 0
\(89\) 10.2909 1.09083 0.545414 0.838166i \(-0.316372\pi\)
0.545414 + 0.838166i \(0.316372\pi\)
\(90\) 0 0
\(91\) −8.17024 −0.856474
\(92\) 0 0
\(93\) 4.46110 0.462595
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 11.4534 1.16291 0.581456 0.813578i \(-0.302483\pi\)
0.581456 + 0.813578i \(0.302483\pi\)
\(98\) 0 0
\(99\) −6.26352 −0.629507
\(100\) 0 0
\(101\) −5.24897 −0.522292 −0.261146 0.965299i \(-0.584100\pi\)
−0.261146 + 0.965299i \(0.584100\pi\)
\(102\) 0 0
\(103\) −1.79561 −0.176926 −0.0884632 0.996079i \(-0.528196\pi\)
−0.0884632 + 0.996079i \(0.528196\pi\)
\(104\) 0 0
\(105\) 3.17530 0.309877
\(106\) 0 0
\(107\) −7.32770 −0.708395 −0.354198 0.935171i \(-0.615246\pi\)
−0.354198 + 0.935171i \(0.615246\pi\)
\(108\) 0 0
\(109\) −19.8229 −1.89869 −0.949347 0.314230i \(-0.898254\pi\)
−0.949347 + 0.314230i \(0.898254\pi\)
\(110\) 0 0
\(111\) −11.3277 −1.07518
\(112\) 0 0
\(113\) −14.9932 −1.41044 −0.705220 0.708988i \(-0.749152\pi\)
−0.705220 + 0.708988i \(0.749152\pi\)
\(114\) 0 0
\(115\) −4.24123 −0.395497
\(116\) 0 0
\(117\) 8.76651 0.810464
\(118\) 0 0
\(119\) −4.29086 −0.393342
\(120\) 0 0
\(121\) 1.47565 0.134150
\(122\) 0 0
\(123\) 3.79385 0.342080
\(124\) 0 0
\(125\) −8.11381 −0.725721
\(126\) 0 0
\(127\) −3.10607 −0.275619 −0.137809 0.990459i \(-0.544006\pi\)
−0.137809 + 0.990459i \(0.544006\pi\)
\(128\) 0 0
\(129\) −17.4466 −1.53608
\(130\) 0 0
\(131\) 11.4757 1.00263 0.501316 0.865264i \(-0.332849\pi\)
0.501316 + 0.865264i \(0.332849\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.35679 0.202840
\(136\) 0 0
\(137\) 14.8084 1.26517 0.632584 0.774492i \(-0.281995\pi\)
0.632584 + 0.774492i \(0.281995\pi\)
\(138\) 0 0
\(139\) −3.12567 −0.265116 −0.132558 0.991175i \(-0.542319\pi\)
−0.132558 + 0.991175i \(0.542319\pi\)
\(140\) 0 0
\(141\) −6.38238 −0.537493
\(142\) 0 0
\(143\) −17.4611 −1.46017
\(144\) 0 0
\(145\) 6.04963 0.502394
\(146\) 0 0
\(147\) 9.32594 0.769191
\(148\) 0 0
\(149\) −15.8648 −1.29970 −0.649849 0.760063i \(-0.725168\pi\)
−0.649849 + 0.760063i \(0.725168\pi\)
\(150\) 0 0
\(151\) −5.07192 −0.412747 −0.206373 0.978473i \(-0.566166\pi\)
−0.206373 + 0.978473i \(0.566166\pi\)
\(152\) 0 0
\(153\) 4.60401 0.372212
\(154\) 0 0
\(155\) −1.79561 −0.144227
\(156\) 0 0
\(157\) −13.3618 −1.06639 −0.533196 0.845992i \(-0.679009\pi\)
−0.533196 + 0.845992i \(0.679009\pi\)
\(158\) 0 0
\(159\) 27.7033 2.19701
\(160\) 0 0
\(161\) 7.97090 0.628195
\(162\) 0 0
\(163\) −19.3354 −1.51447 −0.757234 0.653144i \(-0.773450\pi\)
−0.757234 + 0.653144i \(0.773450\pi\)
\(164\) 0 0
\(165\) 6.78611 0.528298
\(166\) 0 0
\(167\) 2.63041 0.203548 0.101774 0.994808i \(-0.467548\pi\)
0.101774 + 0.994808i \(0.467548\pi\)
\(168\) 0 0
\(169\) 11.4388 0.879909
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.10876 −0.388411 −0.194206 0.980961i \(-0.562213\pi\)
−0.194206 + 0.980961i \(0.562213\pi\)
\(174\) 0 0
\(175\) 6.98545 0.528051
\(176\) 0 0
\(177\) −16.5645 −1.24506
\(178\) 0 0
\(179\) −19.8084 −1.48055 −0.740275 0.672305i \(-0.765305\pi\)
−0.740275 + 0.672305i \(0.765305\pi\)
\(180\) 0 0
\(181\) −11.1480 −0.828621 −0.414311 0.910136i \(-0.635977\pi\)
−0.414311 + 0.910136i \(0.635977\pi\)
\(182\) 0 0
\(183\) 24.3131 1.79728
\(184\) 0 0
\(185\) 4.55943 0.335216
\(186\) 0 0
\(187\) −9.17024 −0.670595
\(188\) 0 0
\(189\) −4.42932 −0.322186
\(190\) 0 0
\(191\) −15.1138 −1.09360 −0.546798 0.837264i \(-0.684154\pi\)
−0.546798 + 0.837264i \(0.684154\pi\)
\(192\) 0 0
\(193\) 14.7374 1.06082 0.530411 0.847741i \(-0.322038\pi\)
0.530411 + 0.847741i \(0.322038\pi\)
\(194\) 0 0
\(195\) −9.49794 −0.680162
\(196\) 0 0
\(197\) −2.31820 −0.165165 −0.0825825 0.996584i \(-0.526317\pi\)
−0.0825825 + 0.996584i \(0.526317\pi\)
\(198\) 0 0
\(199\) −0.650015 −0.0460784 −0.0230392 0.999735i \(-0.507334\pi\)
−0.0230392 + 0.999735i \(0.507334\pi\)
\(200\) 0 0
\(201\) 35.1735 2.48095
\(202\) 0 0
\(203\) −11.3696 −0.797988
\(204\) 0 0
\(205\) −1.52704 −0.106653
\(206\) 0 0
\(207\) −8.55262 −0.594448
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −19.8084 −1.36367 −0.681833 0.731508i \(-0.738817\pi\)
−0.681833 + 0.731508i \(0.738817\pi\)
\(212\) 0 0
\(213\) −29.6304 −2.03024
\(214\) 0 0
\(215\) 7.02229 0.478916
\(216\) 0 0
\(217\) 3.37464 0.229085
\(218\) 0 0
\(219\) −10.3541 −0.699665
\(220\) 0 0
\(221\) 12.8348 0.863363
\(222\) 0 0
\(223\) −6.42602 −0.430318 −0.215159 0.976579i \(-0.569027\pi\)
−0.215159 + 0.976579i \(0.569027\pi\)
\(224\) 0 0
\(225\) −7.49525 −0.499683
\(226\) 0 0
\(227\) −3.19934 −0.212348 −0.106174 0.994348i \(-0.533860\pi\)
−0.106174 + 0.994348i \(0.533860\pi\)
\(228\) 0 0
\(229\) 16.8871 1.11593 0.557966 0.829864i \(-0.311582\pi\)
0.557966 + 0.829864i \(0.311582\pi\)
\(230\) 0 0
\(231\) −12.7537 −0.839133
\(232\) 0 0
\(233\) −14.7151 −0.964020 −0.482010 0.876166i \(-0.660093\pi\)
−0.482010 + 0.876166i \(0.660093\pi\)
\(234\) 0 0
\(235\) 2.56893 0.167578
\(236\) 0 0
\(237\) −2.66313 −0.172989
\(238\) 0 0
\(239\) 1.60307 0.103694 0.0518471 0.998655i \(-0.483489\pi\)
0.0518471 + 0.998655i \(0.483489\pi\)
\(240\) 0 0
\(241\) 1.46017 0.0940578 0.0470289 0.998894i \(-0.485025\pi\)
0.0470289 + 0.998894i \(0.485025\pi\)
\(242\) 0 0
\(243\) 16.3756 1.05049
\(244\) 0 0
\(245\) −3.75372 −0.239816
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 12.8452 0.814034
\(250\) 0 0
\(251\) 0.361844 0.0228394 0.0114197 0.999935i \(-0.496365\pi\)
0.0114197 + 0.999935i \(0.496365\pi\)
\(252\) 0 0
\(253\) 17.0351 1.07099
\(254\) 0 0
\(255\) −4.98814 −0.312369
\(256\) 0 0
\(257\) −23.9590 −1.49452 −0.747262 0.664529i \(-0.768632\pi\)
−0.747262 + 0.664529i \(0.768632\pi\)
\(258\) 0 0
\(259\) −8.56893 −0.532447
\(260\) 0 0
\(261\) 12.1993 0.755120
\(262\) 0 0
\(263\) −15.4388 −0.951998 −0.475999 0.879446i \(-0.657913\pi\)
−0.475999 + 0.879446i \(0.657913\pi\)
\(264\) 0 0
\(265\) −11.1506 −0.684979
\(266\) 0 0
\(267\) −22.4834 −1.37596
\(268\) 0 0
\(269\) 13.0341 0.794706 0.397353 0.917666i \(-0.369929\pi\)
0.397353 + 0.917666i \(0.369929\pi\)
\(270\) 0 0
\(271\) −1.68004 −0.102055 −0.0510277 0.998697i \(-0.516250\pi\)
−0.0510277 + 0.998697i \(0.516250\pi\)
\(272\) 0 0
\(273\) 17.8503 1.08035
\(274\) 0 0
\(275\) 14.9290 0.900253
\(276\) 0 0
\(277\) −16.8949 −1.01511 −0.507557 0.861618i \(-0.669451\pi\)
−0.507557 + 0.861618i \(0.669451\pi\)
\(278\) 0 0
\(279\) −3.62092 −0.216779
\(280\) 0 0
\(281\) −1.53983 −0.0918585 −0.0459293 0.998945i \(-0.514625\pi\)
−0.0459293 + 0.998945i \(0.514625\pi\)
\(282\) 0 0
\(283\) 2.05737 0.122298 0.0611490 0.998129i \(-0.480524\pi\)
0.0611490 + 0.998129i \(0.480524\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.86989 0.169404
\(288\) 0 0
\(289\) −10.2594 −0.603494
\(290\) 0 0
\(291\) −25.0232 −1.46689
\(292\) 0 0
\(293\) 25.5381 1.49195 0.745975 0.665974i \(-0.231984\pi\)
0.745975 + 0.665974i \(0.231984\pi\)
\(294\) 0 0
\(295\) 6.66725 0.388182
\(296\) 0 0
\(297\) −9.46616 −0.549282
\(298\) 0 0
\(299\) −23.8425 −1.37885
\(300\) 0 0
\(301\) −13.1976 −0.760696
\(302\) 0 0
\(303\) 11.4679 0.658814
\(304\) 0 0
\(305\) −9.78611 −0.560351
\(306\) 0 0
\(307\) −10.4037 −0.593772 −0.296886 0.954913i \(-0.595948\pi\)
−0.296886 + 0.954913i \(0.595948\pi\)
\(308\) 0 0
\(309\) 3.92303 0.223173
\(310\) 0 0
\(311\) −15.3550 −0.870704 −0.435352 0.900260i \(-0.643376\pi\)
−0.435352 + 0.900260i \(0.643376\pi\)
\(312\) 0 0
\(313\) −21.7219 −1.22780 −0.613898 0.789385i \(-0.710399\pi\)
−0.613898 + 0.789385i \(0.710399\pi\)
\(314\) 0 0
\(315\) −2.57728 −0.145213
\(316\) 0 0
\(317\) 2.30035 0.129201 0.0646004 0.997911i \(-0.479423\pi\)
0.0646004 + 0.997911i \(0.479423\pi\)
\(318\) 0 0
\(319\) −24.2986 −1.36046
\(320\) 0 0
\(321\) 16.0095 0.893563
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −20.8949 −1.15904
\(326\) 0 0
\(327\) 43.3090 2.39499
\(328\) 0 0
\(329\) −4.82800 −0.266176
\(330\) 0 0
\(331\) 8.64590 0.475221 0.237611 0.971360i \(-0.423636\pi\)
0.237611 + 0.971360i \(0.423636\pi\)
\(332\) 0 0
\(333\) 9.19429 0.503844
\(334\) 0 0
\(335\) −14.1575 −0.773504
\(336\) 0 0
\(337\) −10.2841 −0.560208 −0.280104 0.959970i \(-0.590369\pi\)
−0.280104 + 0.959970i \(0.590369\pi\)
\(338\) 0 0
\(339\) 32.7570 1.77912
\(340\) 0 0
\(341\) 7.21213 0.390559
\(342\) 0 0
\(343\) 18.6236 1.00558
\(344\) 0 0
\(345\) 9.26621 0.498876
\(346\) 0 0
\(347\) 6.21482 0.333629 0.166815 0.985988i \(-0.446652\pi\)
0.166815 + 0.985988i \(0.446652\pi\)
\(348\) 0 0
\(349\) −30.0087 −1.60633 −0.803164 0.595758i \(-0.796852\pi\)
−0.803164 + 0.595758i \(0.796852\pi\)
\(350\) 0 0
\(351\) 13.2490 0.707178
\(352\) 0 0
\(353\) 17.0925 0.909739 0.454870 0.890558i \(-0.349686\pi\)
0.454870 + 0.890558i \(0.349686\pi\)
\(354\) 0 0
\(355\) 11.9263 0.632984
\(356\) 0 0
\(357\) 9.37464 0.496158
\(358\) 0 0
\(359\) 21.9341 1.15764 0.578818 0.815457i \(-0.303514\pi\)
0.578818 + 0.815457i \(0.303514\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −3.22399 −0.169216
\(364\) 0 0
\(365\) 4.16756 0.218140
\(366\) 0 0
\(367\) 36.2627 1.89290 0.946449 0.322854i \(-0.104642\pi\)
0.946449 + 0.322854i \(0.104642\pi\)
\(368\) 0 0
\(369\) −3.07934 −0.160304
\(370\) 0 0
\(371\) 20.9564 1.08800
\(372\) 0 0
\(373\) 15.0942 0.781548 0.390774 0.920487i \(-0.372207\pi\)
0.390774 + 0.920487i \(0.372207\pi\)
\(374\) 0 0
\(375\) 17.7270 0.915418
\(376\) 0 0
\(377\) 34.0087 1.75154
\(378\) 0 0
\(379\) 7.02229 0.360711 0.180355 0.983602i \(-0.442275\pi\)
0.180355 + 0.983602i \(0.442275\pi\)
\(380\) 0 0
\(381\) 6.78611 0.347663
\(382\) 0 0
\(383\) −30.0556 −1.53577 −0.767885 0.640588i \(-0.778691\pi\)
−0.767885 + 0.640588i \(0.778691\pi\)
\(384\) 0 0
\(385\) 5.13341 0.261623
\(386\) 0 0
\(387\) 14.1607 0.719831
\(388\) 0 0
\(389\) −24.0847 −1.22114 −0.610572 0.791961i \(-0.709060\pi\)
−0.610572 + 0.791961i \(0.709060\pi\)
\(390\) 0 0
\(391\) −12.5217 −0.633248
\(392\) 0 0
\(393\) −25.0719 −1.26471
\(394\) 0 0
\(395\) 1.07192 0.0539341
\(396\) 0 0
\(397\) −38.4466 −1.92958 −0.964789 0.263026i \(-0.915279\pi\)
−0.964789 + 0.263026i \(0.915279\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 32.6783 1.63188 0.815938 0.578139i \(-0.196221\pi\)
0.815938 + 0.578139i \(0.196221\pi\)
\(402\) 0 0
\(403\) −10.0942 −0.502828
\(404\) 0 0
\(405\) −9.82739 −0.488327
\(406\) 0 0
\(407\) −18.3131 −0.907749
\(408\) 0 0
\(409\) 27.8776 1.37846 0.689230 0.724543i \(-0.257949\pi\)
0.689230 + 0.724543i \(0.257949\pi\)
\(410\) 0 0
\(411\) −32.3533 −1.59587
\(412\) 0 0
\(413\) −12.5303 −0.616577
\(414\) 0 0
\(415\) −5.17024 −0.253797
\(416\) 0 0
\(417\) 6.82893 0.334414
\(418\) 0 0
\(419\) 38.3455 1.87330 0.936651 0.350264i \(-0.113908\pi\)
0.936651 + 0.350264i \(0.113908\pi\)
\(420\) 0 0
\(421\) 6.24123 0.304179 0.152089 0.988367i \(-0.451400\pi\)
0.152089 + 0.988367i \(0.451400\pi\)
\(422\) 0 0
\(423\) 5.18035 0.251877
\(424\) 0 0
\(425\) −10.9736 −0.532297
\(426\) 0 0
\(427\) 18.3919 0.890045
\(428\) 0 0
\(429\) 38.1489 1.84185
\(430\) 0 0
\(431\) 5.11381 0.246323 0.123162 0.992387i \(-0.460697\pi\)
0.123162 + 0.992387i \(0.460697\pi\)
\(432\) 0 0
\(433\) 5.13516 0.246780 0.123390 0.992358i \(-0.460623\pi\)
0.123390 + 0.992358i \(0.460623\pi\)
\(434\) 0 0
\(435\) −13.2172 −0.633716
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 1.08647 0.0518542 0.0259271 0.999664i \(-0.491746\pi\)
0.0259271 + 0.999664i \(0.491746\pi\)
\(440\) 0 0
\(441\) −7.56953 −0.360454
\(442\) 0 0
\(443\) −21.0993 −1.00246 −0.501228 0.865315i \(-0.667118\pi\)
−0.501228 + 0.865315i \(0.667118\pi\)
\(444\) 0 0
\(445\) 9.04963 0.428994
\(446\) 0 0
\(447\) 34.6614 1.63943
\(448\) 0 0
\(449\) 3.30810 0.156119 0.0780593 0.996949i \(-0.475128\pi\)
0.0780593 + 0.996949i \(0.475128\pi\)
\(450\) 0 0
\(451\) 6.13341 0.288811
\(452\) 0 0
\(453\) 11.0811 0.520635
\(454\) 0 0
\(455\) −7.18479 −0.336828
\(456\) 0 0
\(457\) −26.9659 −1.26141 −0.630705 0.776023i \(-0.717234\pi\)
−0.630705 + 0.776023i \(0.717234\pi\)
\(458\) 0 0
\(459\) 6.95811 0.324777
\(460\) 0 0
\(461\) 18.3533 0.854798 0.427399 0.904063i \(-0.359430\pi\)
0.427399 + 0.904063i \(0.359430\pi\)
\(462\) 0 0
\(463\) −27.9168 −1.29741 −0.648703 0.761042i \(-0.724688\pi\)
−0.648703 + 0.761042i \(0.724688\pi\)
\(464\) 0 0
\(465\) 3.92303 0.181926
\(466\) 0 0
\(467\) −23.7638 −1.09966 −0.549829 0.835277i \(-0.685307\pi\)
−0.549829 + 0.835277i \(0.685307\pi\)
\(468\) 0 0
\(469\) 26.6073 1.22861
\(470\) 0 0
\(471\) 29.1929 1.34514
\(472\) 0 0
\(473\) −28.2053 −1.29688
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −22.4858 −1.02955
\(478\) 0 0
\(479\) 10.1952 0.465832 0.232916 0.972497i \(-0.425173\pi\)
0.232916 + 0.972497i \(0.425173\pi\)
\(480\) 0 0
\(481\) 25.6313 1.16869
\(482\) 0 0
\(483\) −17.4148 −0.792400
\(484\) 0 0
\(485\) 10.0719 0.457342
\(486\) 0 0
\(487\) 6.02053 0.272816 0.136408 0.990653i \(-0.456444\pi\)
0.136408 + 0.990653i \(0.456444\pi\)
\(488\) 0 0
\(489\) 42.2439 1.91034
\(490\) 0 0
\(491\) 36.6236 1.65280 0.826400 0.563083i \(-0.190385\pi\)
0.826400 + 0.563083i \(0.190385\pi\)
\(492\) 0 0
\(493\) 17.8607 0.804406
\(494\) 0 0
\(495\) −5.50805 −0.247568
\(496\) 0 0
\(497\) −22.4142 −1.00541
\(498\) 0 0
\(499\) 33.7202 1.50952 0.754761 0.656000i \(-0.227753\pi\)
0.754761 + 0.656000i \(0.227753\pi\)
\(500\) 0 0
\(501\) −5.74691 −0.256753
\(502\) 0 0
\(503\) −26.6982 −1.19041 −0.595207 0.803572i \(-0.702930\pi\)
−0.595207 + 0.803572i \(0.702930\pi\)
\(504\) 0 0
\(505\) −4.61587 −0.205403
\(506\) 0 0
\(507\) −24.9914 −1.10991
\(508\) 0 0
\(509\) 22.9540 1.01742 0.508709 0.860939i \(-0.330123\pi\)
0.508709 + 0.860939i \(0.330123\pi\)
\(510\) 0 0
\(511\) −7.83244 −0.346487
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.57903 −0.0695804
\(516\) 0 0
\(517\) −10.3182 −0.453794
\(518\) 0 0
\(519\) 11.1616 0.489939
\(520\) 0 0
\(521\) 9.51754 0.416971 0.208486 0.978025i \(-0.433147\pi\)
0.208486 + 0.978025i \(0.433147\pi\)
\(522\) 0 0
\(523\) 6.17200 0.269883 0.134941 0.990854i \(-0.456915\pi\)
0.134941 + 0.990854i \(0.456915\pi\)
\(524\) 0 0
\(525\) −15.2618 −0.666078
\(526\) 0 0
\(527\) −5.30129 −0.230928
\(528\) 0 0
\(529\) 0.260830 0.0113404
\(530\) 0 0
\(531\) 13.4448 0.583455
\(532\) 0 0
\(533\) −8.58441 −0.371832
\(534\) 0 0
\(535\) −6.44387 −0.278593
\(536\) 0 0
\(537\) 43.2772 1.86755
\(538\) 0 0
\(539\) 15.0770 0.649411
\(540\) 0 0
\(541\) −15.6254 −0.671787 −0.335893 0.941900i \(-0.609038\pi\)
−0.335893 + 0.941900i \(0.609038\pi\)
\(542\) 0 0
\(543\) 24.3560 1.04521
\(544\) 0 0
\(545\) −17.4320 −0.746705
\(546\) 0 0
\(547\) 39.1480 1.67385 0.836923 0.547321i \(-0.184352\pi\)
0.836923 + 0.547321i \(0.184352\pi\)
\(548\) 0 0
\(549\) −19.7341 −0.842232
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −2.01455 −0.0856673
\(554\) 0 0
\(555\) −9.96141 −0.422838
\(556\) 0 0
\(557\) 17.3719 0.736073 0.368037 0.929811i \(-0.380030\pi\)
0.368037 + 0.929811i \(0.380030\pi\)
\(558\) 0 0
\(559\) 39.4766 1.66968
\(560\) 0 0
\(561\) 20.0351 0.845882
\(562\) 0 0
\(563\) −32.0283 −1.34983 −0.674915 0.737895i \(-0.735820\pi\)
−0.674915 + 0.737895i \(0.735820\pi\)
\(564\) 0 0
\(565\) −13.1848 −0.554688
\(566\) 0 0
\(567\) 18.4695 0.775644
\(568\) 0 0
\(569\) −20.0077 −0.838768 −0.419384 0.907809i \(-0.637754\pi\)
−0.419384 + 0.907809i \(0.637754\pi\)
\(570\) 0 0
\(571\) 23.0196 0.963340 0.481670 0.876353i \(-0.340030\pi\)
0.481670 + 0.876353i \(0.340030\pi\)
\(572\) 0 0
\(573\) 33.0205 1.37945
\(574\) 0 0
\(575\) 20.3851 0.850116
\(576\) 0 0
\(577\) 1.61318 0.0671575 0.0335788 0.999436i \(-0.489310\pi\)
0.0335788 + 0.999436i \(0.489310\pi\)
\(578\) 0 0
\(579\) −32.1982 −1.33811
\(580\) 0 0
\(581\) 9.71688 0.403124
\(582\) 0 0
\(583\) 44.7870 1.85489
\(584\) 0 0
\(585\) 7.70914 0.318734
\(586\) 0 0
\(587\) 18.9344 0.781506 0.390753 0.920496i \(-0.372215\pi\)
0.390753 + 0.920496i \(0.372215\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 5.06479 0.208338
\(592\) 0 0
\(593\) 29.1189 1.19577 0.597884 0.801583i \(-0.296008\pi\)
0.597884 + 0.801583i \(0.296008\pi\)
\(594\) 0 0
\(595\) −3.77332 −0.154691
\(596\) 0 0
\(597\) 1.42015 0.0581228
\(598\) 0 0
\(599\) 17.9973 0.735350 0.367675 0.929954i \(-0.380154\pi\)
0.367675 + 0.929954i \(0.380154\pi\)
\(600\) 0 0
\(601\) −14.2385 −0.580802 −0.290401 0.956905i \(-0.593789\pi\)
−0.290401 + 0.956905i \(0.593789\pi\)
\(602\) 0 0
\(603\) −28.5491 −1.16261
\(604\) 0 0
\(605\) 1.29767 0.0527576
\(606\) 0 0
\(607\) 23.1702 0.940451 0.470226 0.882546i \(-0.344173\pi\)
0.470226 + 0.882546i \(0.344173\pi\)
\(608\) 0 0
\(609\) 24.8402 1.00658
\(610\) 0 0
\(611\) 14.4415 0.584241
\(612\) 0 0
\(613\) 33.7452 1.36295 0.681477 0.731840i \(-0.261338\pi\)
0.681477 + 0.731840i \(0.261338\pi\)
\(614\) 0 0
\(615\) 3.33626 0.134531
\(616\) 0 0
\(617\) 10.2172 0.411328 0.205664 0.978623i \(-0.434065\pi\)
0.205664 + 0.978623i \(0.434065\pi\)
\(618\) 0 0
\(619\) 29.8188 1.19852 0.599260 0.800554i \(-0.295462\pi\)
0.599260 + 0.800554i \(0.295462\pi\)
\(620\) 0 0
\(621\) −12.9257 −0.518691
\(622\) 0 0
\(623\) −17.0077 −0.681401
\(624\) 0 0
\(625\) 13.9982 0.559930
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.4611 0.536729
\(630\) 0 0
\(631\) 13.0196 0.518302 0.259151 0.965837i \(-0.416557\pi\)
0.259151 + 0.965837i \(0.416557\pi\)
\(632\) 0 0
\(633\) 43.2772 1.72012
\(634\) 0 0
\(635\) −2.73143 −0.108393
\(636\) 0 0
\(637\) −21.1019 −0.836090
\(638\) 0 0
\(639\) 24.0500 0.951401
\(640\) 0 0
\(641\) 1.65270 0.0652779 0.0326389 0.999467i \(-0.489609\pi\)
0.0326389 + 0.999467i \(0.489609\pi\)
\(642\) 0 0
\(643\) −13.6869 −0.539757 −0.269878 0.962894i \(-0.586983\pi\)
−0.269878 + 0.962894i \(0.586983\pi\)
\(644\) 0 0
\(645\) −15.3422 −0.604100
\(646\) 0 0
\(647\) −30.0820 −1.18265 −0.591323 0.806435i \(-0.701394\pi\)
−0.591323 + 0.806435i \(0.701394\pi\)
\(648\) 0 0
\(649\) −26.7793 −1.05118
\(650\) 0 0
\(651\) −7.37288 −0.288966
\(652\) 0 0
\(653\) −6.55674 −0.256585 −0.128293 0.991736i \(-0.540950\pi\)
−0.128293 + 0.991736i \(0.540950\pi\)
\(654\) 0 0
\(655\) 10.0915 0.394308
\(656\) 0 0
\(657\) 8.40406 0.327874
\(658\) 0 0
\(659\) −11.0591 −0.430802 −0.215401 0.976526i \(-0.569106\pi\)
−0.215401 + 0.976526i \(0.569106\pi\)
\(660\) 0 0
\(661\) −22.0368 −0.857134 −0.428567 0.903510i \(-0.640981\pi\)
−0.428567 + 0.903510i \(0.640981\pi\)
\(662\) 0 0
\(663\) −28.0414 −1.08904
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −33.1789 −1.28469
\(668\) 0 0
\(669\) 14.0395 0.542799
\(670\) 0 0
\(671\) 39.3063 1.51740
\(672\) 0 0
\(673\) −1.07873 −0.0415818 −0.0207909 0.999784i \(-0.506618\pi\)
−0.0207909 + 0.999784i \(0.506618\pi\)
\(674\) 0 0
\(675\) −11.3277 −0.436003
\(676\) 0 0
\(677\) −38.9231 −1.49594 −0.747969 0.663734i \(-0.768971\pi\)
−0.747969 + 0.663734i \(0.768971\pi\)
\(678\) 0 0
\(679\) −18.9290 −0.726429
\(680\) 0 0
\(681\) 6.98990 0.267853
\(682\) 0 0
\(683\) −2.33275 −0.0892601 −0.0446301 0.999004i \(-0.514211\pi\)
−0.0446301 + 0.999004i \(0.514211\pi\)
\(684\) 0 0
\(685\) 13.0223 0.497556
\(686\) 0 0
\(687\) −36.8949 −1.40763
\(688\) 0 0
\(689\) −62.6846 −2.38809
\(690\) 0 0
\(691\) −35.5485 −1.35233 −0.676164 0.736751i \(-0.736359\pi\)
−0.676164 + 0.736751i \(0.736359\pi\)
\(692\) 0 0
\(693\) 10.3517 0.393230
\(694\) 0 0
\(695\) −2.74867 −0.104263
\(696\) 0 0
\(697\) −4.50837 −0.170767
\(698\) 0 0
\(699\) 32.1495 1.21601
\(700\) 0 0
\(701\) 18.9017 0.713906 0.356953 0.934122i \(-0.383816\pi\)
0.356953 + 0.934122i \(0.383816\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −5.61257 −0.211382
\(706\) 0 0
\(707\) 8.67499 0.326257
\(708\) 0 0
\(709\) −8.12567 −0.305166 −0.152583 0.988291i \(-0.548759\pi\)
−0.152583 + 0.988291i \(0.548759\pi\)
\(710\) 0 0
\(711\) 2.16157 0.0810652
\(712\) 0 0
\(713\) 9.84793 0.368808
\(714\) 0 0
\(715\) −15.3550 −0.574246
\(716\) 0 0
\(717\) −3.50238 −0.130799
\(718\) 0 0
\(719\) 39.1429 1.45978 0.729892 0.683562i \(-0.239570\pi\)
0.729892 + 0.683562i \(0.239570\pi\)
\(720\) 0 0
\(721\) 2.96761 0.110519
\(722\) 0 0
\(723\) −3.19017 −0.118644
\(724\) 0 0
\(725\) −29.0770 −1.07989
\(726\) 0 0
\(727\) 0.246282 0.00913409 0.00456705 0.999990i \(-0.498546\pi\)
0.00456705 + 0.999990i \(0.498546\pi\)
\(728\) 0 0
\(729\) −2.25133 −0.0833828
\(730\) 0 0
\(731\) 20.7324 0.766814
\(732\) 0 0
\(733\) 0.266207 0.00983256 0.00491628 0.999988i \(-0.498435\pi\)
0.00491628 + 0.999988i \(0.498435\pi\)
\(734\) 0 0
\(735\) 8.20110 0.302502
\(736\) 0 0
\(737\) 56.8640 2.09461
\(738\) 0 0
\(739\) −21.8753 −0.804695 −0.402347 0.915487i \(-0.631806\pi\)
−0.402347 + 0.915487i \(0.631806\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.49794 0.0549541 0.0274771 0.999622i \(-0.491253\pi\)
0.0274771 + 0.999622i \(0.491253\pi\)
\(744\) 0 0
\(745\) −13.9513 −0.511136
\(746\) 0 0
\(747\) −10.4260 −0.381468
\(748\) 0 0
\(749\) 12.1105 0.442508
\(750\) 0 0
\(751\) 9.34493 0.341001 0.170501 0.985358i \(-0.445461\pi\)
0.170501 + 0.985358i \(0.445461\pi\)
\(752\) 0 0
\(753\) −0.790555 −0.0288094
\(754\) 0 0
\(755\) −4.46017 −0.162322
\(756\) 0 0
\(757\) 9.85122 0.358049 0.179024 0.983845i \(-0.442706\pi\)
0.179024 + 0.983845i \(0.442706\pi\)
\(758\) 0 0
\(759\) −37.2181 −1.35093
\(760\) 0 0
\(761\) 18.9040 0.685271 0.342635 0.939468i \(-0.388680\pi\)
0.342635 + 0.939468i \(0.388680\pi\)
\(762\) 0 0
\(763\) 32.7615 1.18604
\(764\) 0 0
\(765\) 4.04870 0.146381
\(766\) 0 0
\(767\) 37.4807 1.35335
\(768\) 0 0
\(769\) −13.0436 −0.470366 −0.235183 0.971951i \(-0.575569\pi\)
−0.235183 + 0.971951i \(0.575569\pi\)
\(770\) 0 0
\(771\) 52.3455 1.88518
\(772\) 0 0
\(773\) 22.9727 0.826269 0.413135 0.910670i \(-0.364434\pi\)
0.413135 + 0.910670i \(0.364434\pi\)
\(774\) 0 0
\(775\) 8.63041 0.310014
\(776\) 0 0
\(777\) 18.7213 0.671624
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −47.9026 −1.71409
\(782\) 0 0
\(783\) 18.4371 0.658887
\(784\) 0 0
\(785\) −11.7502 −0.419383
\(786\) 0 0
\(787\) −43.6705 −1.55669 −0.778343 0.627839i \(-0.783940\pi\)
−0.778343 + 0.627839i \(0.783940\pi\)
\(788\) 0 0
\(789\) 33.7306 1.20084
\(790\) 0 0
\(791\) 24.7793 0.881051
\(792\) 0 0
\(793\) −55.0137 −1.95359
\(794\) 0 0
\(795\) 24.3618 0.864026
\(796\) 0 0
\(797\) 4.65507 0.164891 0.0824455 0.996596i \(-0.473727\pi\)
0.0824455 + 0.996596i \(0.473727\pi\)
\(798\) 0 0
\(799\) 7.58441 0.268317
\(800\) 0 0
\(801\) 18.2490 0.644796
\(802\) 0 0
\(803\) −16.7392 −0.590712
\(804\) 0 0
\(805\) 7.00950 0.247052
\(806\) 0 0
\(807\) −28.4769 −1.00243
\(808\) 0 0
\(809\) 2.39599 0.0842386 0.0421193 0.999113i \(-0.486589\pi\)
0.0421193 + 0.999113i \(0.486589\pi\)
\(810\) 0 0
\(811\) −41.5553 −1.45920 −0.729602 0.683872i \(-0.760295\pi\)
−0.729602 + 0.683872i \(0.760295\pi\)
\(812\) 0 0
\(813\) 3.67055 0.128732
\(814\) 0 0
\(815\) −17.0033 −0.595600
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −14.4884 −0.506267
\(820\) 0 0
\(821\) 39.6759 1.38470 0.692350 0.721562i \(-0.256576\pi\)
0.692350 + 0.721562i \(0.256576\pi\)
\(822\) 0 0
\(823\) −14.7537 −0.514282 −0.257141 0.966374i \(-0.582781\pi\)
−0.257141 + 0.966374i \(0.582781\pi\)
\(824\) 0 0
\(825\) −32.6168 −1.13557
\(826\) 0 0
\(827\) −22.2608 −0.774085 −0.387042 0.922062i \(-0.626503\pi\)
−0.387042 + 0.922062i \(0.626503\pi\)
\(828\) 0 0
\(829\) 40.1644 1.39497 0.697483 0.716601i \(-0.254303\pi\)
0.697483 + 0.716601i \(0.254303\pi\)
\(830\) 0 0
\(831\) 36.9118 1.28046
\(832\) 0 0
\(833\) −11.0823 −0.383981
\(834\) 0 0
\(835\) 2.31315 0.0800498
\(836\) 0 0
\(837\) −5.47235 −0.189152
\(838\) 0 0
\(839\) 48.3857 1.67046 0.835230 0.549901i \(-0.185335\pi\)
0.835230 + 0.549901i \(0.185335\pi\)
\(840\) 0 0
\(841\) 18.3259 0.631929
\(842\) 0 0
\(843\) 3.36421 0.115869
\(844\) 0 0
\(845\) 10.0591 0.346044
\(846\) 0 0
\(847\) −2.43882 −0.0837987
\(848\) 0 0
\(849\) −4.49493 −0.154266
\(850\) 0 0
\(851\) −25.0060 −0.857194
\(852\) 0 0
\(853\) 0.526712 0.0180343 0.00901714 0.999959i \(-0.497130\pi\)
0.00901714 + 0.999959i \(0.497130\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −16.8161 −0.574428 −0.287214 0.957866i \(-0.592729\pi\)
−0.287214 + 0.957866i \(0.592729\pi\)
\(858\) 0 0
\(859\) −47.5963 −1.62396 −0.811982 0.583683i \(-0.801611\pi\)
−0.811982 + 0.583683i \(0.801611\pi\)
\(860\) 0 0
\(861\) −6.27011 −0.213685
\(862\) 0 0
\(863\) 34.4766 1.17360 0.586798 0.809733i \(-0.300388\pi\)
0.586798 + 0.809733i \(0.300388\pi\)
\(864\) 0 0
\(865\) −4.49256 −0.152752
\(866\) 0 0
\(867\) 22.4147 0.761242
\(868\) 0 0
\(869\) −4.30541 −0.146051
\(870\) 0 0
\(871\) −79.5877 −2.69673
\(872\) 0 0
\(873\) 20.3105 0.687405
\(874\) 0 0
\(875\) 13.4097 0.453331
\(876\) 0 0
\(877\) −49.8699 −1.68399 −0.841993 0.539488i \(-0.818618\pi\)
−0.841993 + 0.539488i \(0.818618\pi\)
\(878\) 0 0
\(879\) −55.7954 −1.88193
\(880\) 0 0
\(881\) 11.2422 0.378758 0.189379 0.981904i \(-0.439353\pi\)
0.189379 + 0.981904i \(0.439353\pi\)
\(882\) 0 0
\(883\) −21.9581 −0.738949 −0.369475 0.929241i \(-0.620462\pi\)
−0.369475 + 0.929241i \(0.620462\pi\)
\(884\) 0 0
\(885\) −14.5666 −0.489650
\(886\) 0 0
\(887\) −34.5262 −1.15928 −0.579638 0.814874i \(-0.696806\pi\)
−0.579638 + 0.814874i \(0.696806\pi\)
\(888\) 0 0
\(889\) 5.13341 0.172169
\(890\) 0 0
\(891\) 39.4721 1.32237
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −17.4192 −0.582260
\(896\) 0 0
\(897\) 52.0910 1.73927
\(898\) 0 0
\(899\) −14.0469 −0.468492
\(900\) 0 0
\(901\) −32.9208 −1.09675
\(902\) 0 0
\(903\) 28.8340 0.959535
\(904\) 0 0
\(905\) −9.80335 −0.325874
\(906\) 0 0
\(907\) −30.4793 −1.01205 −0.506024 0.862519i \(-0.668885\pi\)
−0.506024 + 0.862519i \(0.668885\pi\)
\(908\) 0 0
\(909\) −9.30810 −0.308730
\(910\) 0 0
\(911\) −38.8016 −1.28555 −0.642777 0.766053i \(-0.722218\pi\)
−0.642777 + 0.766053i \(0.722218\pi\)
\(912\) 0 0
\(913\) 20.7665 0.687271
\(914\) 0 0
\(915\) 21.3806 0.706822
\(916\) 0 0
\(917\) −18.9659 −0.626308
\(918\) 0 0
\(919\) −33.5149 −1.10555 −0.552776 0.833330i \(-0.686432\pi\)
−0.552776 + 0.833330i \(0.686432\pi\)
\(920\) 0 0
\(921\) 22.7300 0.748979
\(922\) 0 0
\(923\) 67.0452 2.20682
\(924\) 0 0
\(925\) −21.9145 −0.720543
\(926\) 0 0
\(927\) −3.18418 −0.104582
\(928\) 0 0
\(929\) −29.3919 −0.964316 −0.482158 0.876084i \(-0.660147\pi\)
−0.482158 + 0.876084i \(0.660147\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 33.5476 1.09830
\(934\) 0 0
\(935\) −8.06418 −0.263727
\(936\) 0 0
\(937\) −52.6682 −1.72059 −0.860297 0.509793i \(-0.829722\pi\)
−0.860297 + 0.509793i \(0.829722\pi\)
\(938\) 0 0
\(939\) 47.4579 1.54873
\(940\) 0 0
\(941\) −32.2763 −1.05218 −0.526089 0.850430i \(-0.676342\pi\)
−0.526089 + 0.850430i \(0.676342\pi\)
\(942\) 0 0
\(943\) 8.37496 0.272726
\(944\) 0 0
\(945\) −3.89508 −0.126707
\(946\) 0 0
\(947\) −48.1976 −1.56621 −0.783106 0.621889i \(-0.786366\pi\)
−0.783106 + 0.621889i \(0.786366\pi\)
\(948\) 0 0
\(949\) 23.4284 0.760518
\(950\) 0 0
\(951\) −5.02580 −0.162973
\(952\) 0 0
\(953\) 28.2300 0.914459 0.457229 0.889349i \(-0.348842\pi\)
0.457229 + 0.889349i \(0.348842\pi\)
\(954\) 0 0
\(955\) −13.2909 −0.430082
\(956\) 0 0
\(957\) 53.0874 1.71607
\(958\) 0 0
\(959\) −24.4739 −0.790303
\(960\) 0 0
\(961\) −26.8307 −0.865506
\(962\) 0 0
\(963\) −12.9943 −0.418737
\(964\) 0 0
\(965\) 12.9599 0.417193
\(966\) 0 0
\(967\) −32.1985 −1.03543 −0.517717 0.855552i \(-0.673218\pi\)
−0.517717 + 0.855552i \(0.673218\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.33511 0.0749373 0.0374687 0.999298i \(-0.488071\pi\)
0.0374687 + 0.999298i \(0.488071\pi\)
\(972\) 0 0
\(973\) 5.16580 0.165608
\(974\) 0 0
\(975\) 45.6509 1.46200
\(976\) 0 0
\(977\) −15.0993 −0.483068 −0.241534 0.970392i \(-0.577651\pi\)
−0.241534 + 0.970392i \(0.577651\pi\)
\(978\) 0 0
\(979\) −36.3482 −1.16169
\(980\) 0 0
\(981\) −35.1524 −1.12233
\(982\) 0 0
\(983\) 61.8495 1.97269 0.986346 0.164687i \(-0.0526615\pi\)
0.986346 + 0.164687i \(0.0526615\pi\)
\(984\) 0 0
\(985\) −2.03859 −0.0649549
\(986\) 0 0
\(987\) 10.5482 0.335752
\(988\) 0 0
\(989\) −38.5134 −1.22466
\(990\) 0 0
\(991\) 40.8117 1.29643 0.648213 0.761459i \(-0.275517\pi\)
0.648213 + 0.761459i \(0.275517\pi\)
\(992\) 0 0
\(993\) −18.8895 −0.599440
\(994\) 0 0
\(995\) −0.571614 −0.0181214
\(996\) 0 0
\(997\) −43.9050 −1.39048 −0.695242 0.718776i \(-0.744703\pi\)
−0.695242 + 0.718776i \(0.744703\pi\)
\(998\) 0 0
\(999\) 13.8955 0.439633
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.m.1.2 3
4.3 odd 2 5776.2.a.bs.1.2 3
19.3 odd 18 152.2.q.b.9.1 6
19.13 odd 18 152.2.q.b.17.1 yes 6
19.18 odd 2 2888.2.a.s.1.2 3
76.3 even 18 304.2.u.a.161.1 6
76.51 even 18 304.2.u.a.17.1 6
76.75 even 2 5776.2.a.bj.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.q.b.9.1 6 19.3 odd 18
152.2.q.b.17.1 yes 6 19.13 odd 18
304.2.u.a.17.1 6 76.51 even 18
304.2.u.a.161.1 6 76.3 even 18
2888.2.a.m.1.2 3 1.1 even 1 trivial
2888.2.a.s.1.2 3 19.18 odd 2
5776.2.a.bj.1.2 3 76.75 even 2
5776.2.a.bs.1.2 3 4.3 odd 2