Properties

Label 2888.2.a.m.1.1
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,0,-3,0,-6,0,12,0,-6,0,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.22668 q^{3} -2.53209 q^{5} -3.87939 q^{7} +7.41147 q^{9} -2.34730 q^{11} -0.837496 q^{13} +8.17024 q^{15} -0.958111 q^{17} +12.5175 q^{21} +4.36959 q^{23} +1.41147 q^{25} -14.2344 q^{27} +3.46791 q^{29} +4.63816 q^{31} +7.57398 q^{33} +9.82295 q^{35} +6.22668 q^{37} +2.70233 q^{39} +9.39693 q^{41} -4.47565 q^{43} -18.7665 q^{45} -7.17024 q^{47} +8.04963 q^{49} +3.09152 q^{51} +4.23442 q^{53} +5.94356 q^{55} -8.43376 q^{59} -6.38919 q^{61} -28.7520 q^{63} +2.12061 q^{65} +13.5621 q^{67} -14.0993 q^{69} +8.53714 q^{71} +8.90673 q^{73} -4.55438 q^{75} +9.10607 q^{77} +3.73143 q^{79} +23.6955 q^{81} -2.46791 q^{83} +2.42602 q^{85} -11.1898 q^{87} +2.28312 q^{89} +3.24897 q^{91} -14.9659 q^{93} +0.177052 q^{97} -17.3969 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 3 q^{5} - 6 q^{7} + 12 q^{9} - 6 q^{11} + 3 q^{15} - 6 q^{17} + 15 q^{21} + 6 q^{23} - 6 q^{25} - 12 q^{27} + 15 q^{29} - 3 q^{31} + 15 q^{33} + 9 q^{35} + 12 q^{37} - 18 q^{39} + 6 q^{43}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.22668 −1.86293 −0.931463 0.363837i \(-0.881467\pi\)
−0.931463 + 0.363837i \(0.881467\pi\)
\(4\) 0 0
\(5\) −2.53209 −1.13238 −0.566192 0.824273i \(-0.691584\pi\)
−0.566192 + 0.824273i \(0.691584\pi\)
\(6\) 0 0
\(7\) −3.87939 −1.46627 −0.733135 0.680083i \(-0.761944\pi\)
−0.733135 + 0.680083i \(0.761944\pi\)
\(8\) 0 0
\(9\) 7.41147 2.47049
\(10\) 0 0
\(11\) −2.34730 −0.707736 −0.353868 0.935295i \(-0.615134\pi\)
−0.353868 + 0.935295i \(0.615134\pi\)
\(12\) 0 0
\(13\) −0.837496 −0.232280 −0.116140 0.993233i \(-0.537052\pi\)
−0.116140 + 0.993233i \(0.537052\pi\)
\(14\) 0 0
\(15\) 8.17024 2.10955
\(16\) 0 0
\(17\) −0.958111 −0.232376 −0.116188 0.993227i \(-0.537068\pi\)
−0.116188 + 0.993227i \(0.537068\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 12.5175 2.73155
\(22\) 0 0
\(23\) 4.36959 0.911121 0.455561 0.890205i \(-0.349439\pi\)
0.455561 + 0.890205i \(0.349439\pi\)
\(24\) 0 0
\(25\) 1.41147 0.282295
\(26\) 0 0
\(27\) −14.2344 −2.73942
\(28\) 0 0
\(29\) 3.46791 0.643975 0.321987 0.946744i \(-0.395649\pi\)
0.321987 + 0.946744i \(0.395649\pi\)
\(30\) 0 0
\(31\) 4.63816 0.833037 0.416519 0.909127i \(-0.363250\pi\)
0.416519 + 0.909127i \(0.363250\pi\)
\(32\) 0 0
\(33\) 7.57398 1.31846
\(34\) 0 0
\(35\) 9.82295 1.66038
\(36\) 0 0
\(37\) 6.22668 1.02366 0.511830 0.859087i \(-0.328968\pi\)
0.511830 + 0.859087i \(0.328968\pi\)
\(38\) 0 0
\(39\) 2.70233 0.432720
\(40\) 0 0
\(41\) 9.39693 1.46755 0.733777 0.679391i \(-0.237756\pi\)
0.733777 + 0.679391i \(0.237756\pi\)
\(42\) 0 0
\(43\) −4.47565 −0.682531 −0.341265 0.939967i \(-0.610855\pi\)
−0.341265 + 0.939967i \(0.610855\pi\)
\(44\) 0 0
\(45\) −18.7665 −2.79755
\(46\) 0 0
\(47\) −7.17024 −1.04589 −0.522944 0.852367i \(-0.675166\pi\)
−0.522944 + 0.852367i \(0.675166\pi\)
\(48\) 0 0
\(49\) 8.04963 1.14995
\(50\) 0 0
\(51\) 3.09152 0.432899
\(52\) 0 0
\(53\) 4.23442 0.581643 0.290821 0.956777i \(-0.406071\pi\)
0.290821 + 0.956777i \(0.406071\pi\)
\(54\) 0 0
\(55\) 5.94356 0.801430
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.43376 −1.09798 −0.548991 0.835828i \(-0.684988\pi\)
−0.548991 + 0.835828i \(0.684988\pi\)
\(60\) 0 0
\(61\) −6.38919 −0.818051 −0.409026 0.912523i \(-0.634131\pi\)
−0.409026 + 0.912523i \(0.634131\pi\)
\(62\) 0 0
\(63\) −28.7520 −3.62241
\(64\) 0 0
\(65\) 2.12061 0.263030
\(66\) 0 0
\(67\) 13.5621 1.65688 0.828438 0.560080i \(-0.189230\pi\)
0.828438 + 0.560080i \(0.189230\pi\)
\(68\) 0 0
\(69\) −14.0993 −1.69735
\(70\) 0 0
\(71\) 8.53714 1.01317 0.506586 0.862189i \(-0.330907\pi\)
0.506586 + 0.862189i \(0.330907\pi\)
\(72\) 0 0
\(73\) 8.90673 1.04245 0.521227 0.853418i \(-0.325475\pi\)
0.521227 + 0.853418i \(0.325475\pi\)
\(74\) 0 0
\(75\) −4.55438 −0.525894
\(76\) 0 0
\(77\) 9.10607 1.03773
\(78\) 0 0
\(79\) 3.73143 0.419819 0.209909 0.977721i \(-0.432683\pi\)
0.209909 + 0.977721i \(0.432683\pi\)
\(80\) 0 0
\(81\) 23.6955 2.63284
\(82\) 0 0
\(83\) −2.46791 −0.270888 −0.135444 0.990785i \(-0.543246\pi\)
−0.135444 + 0.990785i \(0.543246\pi\)
\(84\) 0 0
\(85\) 2.42602 0.263139
\(86\) 0 0
\(87\) −11.1898 −1.19968
\(88\) 0 0
\(89\) 2.28312 0.242010 0.121005 0.992652i \(-0.461388\pi\)
0.121005 + 0.992652i \(0.461388\pi\)
\(90\) 0 0
\(91\) 3.24897 0.340585
\(92\) 0 0
\(93\) −14.9659 −1.55189
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.177052 0.0179769 0.00898844 0.999960i \(-0.497139\pi\)
0.00898844 + 0.999960i \(0.497139\pi\)
\(98\) 0 0
\(99\) −17.3969 −1.74846
\(100\) 0 0
\(101\) −3.92127 −0.390181 −0.195091 0.980785i \(-0.562500\pi\)
−0.195091 + 0.980785i \(0.562500\pi\)
\(102\) 0 0
\(103\) −11.7442 −1.15719 −0.578596 0.815614i \(-0.696399\pi\)
−0.578596 + 0.815614i \(0.696399\pi\)
\(104\) 0 0
\(105\) −31.6955 −3.09317
\(106\) 0 0
\(107\) −16.0915 −1.55563 −0.777813 0.628496i \(-0.783671\pi\)
−0.777813 + 0.628496i \(0.783671\pi\)
\(108\) 0 0
\(109\) −10.6304 −1.01821 −0.509105 0.860705i \(-0.670023\pi\)
−0.509105 + 0.860705i \(0.670023\pi\)
\(110\) 0 0
\(111\) −20.0915 −1.90700
\(112\) 0 0
\(113\) 5.61856 0.528549 0.264275 0.964447i \(-0.414867\pi\)
0.264275 + 0.964447i \(0.414867\pi\)
\(114\) 0 0
\(115\) −11.0642 −1.03174
\(116\) 0 0
\(117\) −6.20708 −0.573845
\(118\) 0 0
\(119\) 3.71688 0.340726
\(120\) 0 0
\(121\) −5.49020 −0.499109
\(122\) 0 0
\(123\) −30.3209 −2.73394
\(124\) 0 0
\(125\) 9.08647 0.812718
\(126\) 0 0
\(127\) 5.94356 0.527406 0.263703 0.964604i \(-0.415056\pi\)
0.263703 + 0.964604i \(0.415056\pi\)
\(128\) 0 0
\(129\) 14.4415 1.27150
\(130\) 0 0
\(131\) 4.50980 0.394023 0.197012 0.980401i \(-0.436876\pi\)
0.197012 + 0.980401i \(0.436876\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 36.0428 3.10207
\(136\) 0 0
\(137\) −6.84524 −0.584828 −0.292414 0.956292i \(-0.594459\pi\)
−0.292414 + 0.956292i \(0.594459\pi\)
\(138\) 0 0
\(139\) 16.9145 1.43467 0.717333 0.696730i \(-0.245363\pi\)
0.717333 + 0.696730i \(0.245363\pi\)
\(140\) 0 0
\(141\) 23.1361 1.94841
\(142\) 0 0
\(143\) 1.96585 0.164393
\(144\) 0 0
\(145\) −8.78106 −0.729227
\(146\) 0 0
\(147\) −25.9736 −2.14227
\(148\) 0 0
\(149\) 0.00774079 0.000634150 0 0.000317075 1.00000i \(-0.499899\pi\)
0.000317075 1.00000i \(0.499899\pi\)
\(150\) 0 0
\(151\) 5.44831 0.443377 0.221689 0.975118i \(-0.428843\pi\)
0.221689 + 0.975118i \(0.428843\pi\)
\(152\) 0 0
\(153\) −7.10101 −0.574083
\(154\) 0 0
\(155\) −11.7442 −0.943319
\(156\) 0 0
\(157\) −23.5963 −1.88319 −0.941594 0.336752i \(-0.890672\pi\)
−0.941594 + 0.336752i \(0.890672\pi\)
\(158\) 0 0
\(159\) −13.6631 −1.08356
\(160\) 0 0
\(161\) −16.9513 −1.33595
\(162\) 0 0
\(163\) −19.9486 −1.56250 −0.781248 0.624221i \(-0.785417\pi\)
−0.781248 + 0.624221i \(0.785417\pi\)
\(164\) 0 0
\(165\) −19.1780 −1.49300
\(166\) 0 0
\(167\) 0.546637 0.0423000 0.0211500 0.999776i \(-0.493267\pi\)
0.0211500 + 0.999776i \(0.493267\pi\)
\(168\) 0 0
\(169\) −12.2986 −0.946046
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −11.3601 −0.863692 −0.431846 0.901947i \(-0.642138\pi\)
−0.431846 + 0.901947i \(0.642138\pi\)
\(174\) 0 0
\(175\) −5.47565 −0.413920
\(176\) 0 0
\(177\) 27.2131 2.04546
\(178\) 0 0
\(179\) 1.84524 0.137919 0.0689597 0.997619i \(-0.478032\pi\)
0.0689597 + 0.997619i \(0.478032\pi\)
\(180\) 0 0
\(181\) 4.58172 0.340556 0.170278 0.985396i \(-0.445533\pi\)
0.170278 + 0.985396i \(0.445533\pi\)
\(182\) 0 0
\(183\) 20.6159 1.52397
\(184\) 0 0
\(185\) −15.7665 −1.15918
\(186\) 0 0
\(187\) 2.24897 0.164461
\(188\) 0 0
\(189\) 55.2208 4.01672
\(190\) 0 0
\(191\) 2.08647 0.150971 0.0754857 0.997147i \(-0.475949\pi\)
0.0754857 + 0.997147i \(0.475949\pi\)
\(192\) 0 0
\(193\) −25.1584 −1.81094 −0.905470 0.424410i \(-0.860482\pi\)
−0.905470 + 0.424410i \(0.860482\pi\)
\(194\) 0 0
\(195\) −6.84255 −0.490005
\(196\) 0 0
\(197\) 24.8307 1.76911 0.884557 0.466433i \(-0.154461\pi\)
0.884557 + 0.466433i \(0.154461\pi\)
\(198\) 0 0
\(199\) 12.4243 0.880733 0.440366 0.897818i \(-0.354849\pi\)
0.440366 + 0.897818i \(0.354849\pi\)
\(200\) 0 0
\(201\) −43.7606 −3.08664
\(202\) 0 0
\(203\) −13.4534 −0.944241
\(204\) 0 0
\(205\) −23.7939 −1.66183
\(206\) 0 0
\(207\) 32.3851 2.25092
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.84524 0.127031 0.0635157 0.997981i \(-0.479769\pi\)
0.0635157 + 0.997981i \(0.479769\pi\)
\(212\) 0 0
\(213\) −27.5466 −1.88746
\(214\) 0 0
\(215\) 11.3327 0.772887
\(216\) 0 0
\(217\) −17.9932 −1.22146
\(218\) 0 0
\(219\) −28.7392 −1.94201
\(220\) 0 0
\(221\) 0.802414 0.0539762
\(222\) 0 0
\(223\) −14.2909 −0.956987 −0.478493 0.878091i \(-0.658817\pi\)
−0.478493 + 0.878091i \(0.658817\pi\)
\(224\) 0 0
\(225\) 10.4611 0.697407
\(226\) 0 0
\(227\) −16.7023 −1.10857 −0.554286 0.832326i \(-0.687009\pi\)
−0.554286 + 0.832326i \(0.687009\pi\)
\(228\) 0 0
\(229\) 5.32501 0.351886 0.175943 0.984400i \(-0.443702\pi\)
0.175943 + 0.984400i \(0.443702\pi\)
\(230\) 0 0
\(231\) −29.3824 −1.93322
\(232\) 0 0
\(233\) 29.4911 1.93203 0.966014 0.258489i \(-0.0832246\pi\)
0.966014 + 0.258489i \(0.0832246\pi\)
\(234\) 0 0
\(235\) 18.1557 1.18435
\(236\) 0 0
\(237\) −12.0401 −0.782091
\(238\) 0 0
\(239\) 18.6604 1.20704 0.603522 0.797346i \(-0.293764\pi\)
0.603522 + 0.797346i \(0.293764\pi\)
\(240\) 0 0
\(241\) 10.7956 0.695406 0.347703 0.937605i \(-0.386962\pi\)
0.347703 + 0.937605i \(0.386962\pi\)
\(242\) 0 0
\(243\) −33.7547 −2.16536
\(244\) 0 0
\(245\) −20.3824 −1.30218
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 7.96316 0.504645
\(250\) 0 0
\(251\) 10.5963 0.668830 0.334415 0.942426i \(-0.391461\pi\)
0.334415 + 0.942426i \(0.391461\pi\)
\(252\) 0 0
\(253\) −10.2567 −0.644834
\(254\) 0 0
\(255\) −7.82800 −0.490208
\(256\) 0 0
\(257\) −1.87670 −0.117065 −0.0585326 0.998285i \(-0.518642\pi\)
−0.0585326 + 0.998285i \(0.518642\pi\)
\(258\) 0 0
\(259\) −24.1557 −1.50096
\(260\) 0 0
\(261\) 25.7023 1.59093
\(262\) 0 0
\(263\) 8.29860 0.511714 0.255857 0.966715i \(-0.417642\pi\)
0.255857 + 0.966715i \(0.417642\pi\)
\(264\) 0 0
\(265\) −10.7219 −0.658643
\(266\) 0 0
\(267\) −7.36690 −0.450847
\(268\) 0 0
\(269\) 14.5047 0.884370 0.442185 0.896924i \(-0.354203\pi\)
0.442185 + 0.896924i \(0.354203\pi\)
\(270\) 0 0
\(271\) 15.2344 0.925425 0.462713 0.886508i \(-0.346876\pi\)
0.462713 + 0.886508i \(0.346876\pi\)
\(272\) 0 0
\(273\) −10.4834 −0.634484
\(274\) 0 0
\(275\) −3.31315 −0.199790
\(276\) 0 0
\(277\) 2.81790 0.169311 0.0846555 0.996410i \(-0.473021\pi\)
0.0846555 + 0.996410i \(0.473021\pi\)
\(278\) 0 0
\(279\) 34.3756 2.05801
\(280\) 0 0
\(281\) 7.79561 0.465047 0.232523 0.972591i \(-0.425302\pi\)
0.232523 + 0.972591i \(0.425302\pi\)
\(282\) 0 0
\(283\) −20.9240 −1.24380 −0.621900 0.783096i \(-0.713639\pi\)
−0.621900 + 0.783096i \(0.713639\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −36.4543 −2.15183
\(288\) 0 0
\(289\) −16.0820 −0.946001
\(290\) 0 0
\(291\) −0.571290 −0.0334896
\(292\) 0 0
\(293\) −27.8607 −1.62764 −0.813820 0.581117i \(-0.802616\pi\)
−0.813820 + 0.581117i \(0.802616\pi\)
\(294\) 0 0
\(295\) 21.3550 1.24334
\(296\) 0 0
\(297\) 33.4124 1.93878
\(298\) 0 0
\(299\) −3.65951 −0.211635
\(300\) 0 0
\(301\) 17.3628 1.00077
\(302\) 0 0
\(303\) 12.6527 0.726879
\(304\) 0 0
\(305\) 16.1780 0.926349
\(306\) 0 0
\(307\) −13.9581 −0.796631 −0.398316 0.917248i \(-0.630405\pi\)
−0.398316 + 0.917248i \(0.630405\pi\)
\(308\) 0 0
\(309\) 37.8949 2.15576
\(310\) 0 0
\(311\) −4.97771 −0.282260 −0.141130 0.989991i \(-0.545074\pi\)
−0.141130 + 0.989991i \(0.545074\pi\)
\(312\) 0 0
\(313\) 1.87258 0.105844 0.0529222 0.998599i \(-0.483146\pi\)
0.0529222 + 0.998599i \(0.483146\pi\)
\(314\) 0 0
\(315\) 72.8025 4.10196
\(316\) 0 0
\(317\) 30.2053 1.69650 0.848250 0.529596i \(-0.177656\pi\)
0.848250 + 0.529596i \(0.177656\pi\)
\(318\) 0 0
\(319\) −8.14022 −0.455765
\(320\) 0 0
\(321\) 51.9222 2.89802
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −1.18210 −0.0655713
\(326\) 0 0
\(327\) 34.3010 1.89685
\(328\) 0 0
\(329\) 27.8161 1.53355
\(330\) 0 0
\(331\) −9.73917 −0.535313 −0.267657 0.963514i \(-0.586249\pi\)
−0.267657 + 0.963514i \(0.586249\pi\)
\(332\) 0 0
\(333\) 46.1489 2.52894
\(334\) 0 0
\(335\) −34.3405 −1.87622
\(336\) 0 0
\(337\) 18.3354 0.998795 0.499397 0.866373i \(-0.333555\pi\)
0.499397 + 0.866373i \(0.333555\pi\)
\(338\) 0 0
\(339\) −18.1293 −0.984648
\(340\) 0 0
\(341\) −10.8871 −0.589571
\(342\) 0 0
\(343\) −4.07192 −0.219863
\(344\) 0 0
\(345\) 35.7006 1.92205
\(346\) 0 0
\(347\) 3.41653 0.183409 0.0917044 0.995786i \(-0.470769\pi\)
0.0917044 + 0.995786i \(0.470769\pi\)
\(348\) 0 0
\(349\) 6.90436 0.369582 0.184791 0.982778i \(-0.440839\pi\)
0.184791 + 0.982778i \(0.440839\pi\)
\(350\) 0 0
\(351\) 11.9213 0.636311
\(352\) 0 0
\(353\) −33.1807 −1.76603 −0.883015 0.469346i \(-0.844490\pi\)
−0.883015 + 0.469346i \(0.844490\pi\)
\(354\) 0 0
\(355\) −21.6168 −1.14730
\(356\) 0 0
\(357\) −11.9932 −0.634747
\(358\) 0 0
\(359\) −19.7597 −1.04288 −0.521439 0.853289i \(-0.674604\pi\)
−0.521439 + 0.853289i \(0.674604\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 17.7151 0.929803
\(364\) 0 0
\(365\) −22.5526 −1.18046
\(366\) 0 0
\(367\) −25.4296 −1.32742 −0.663708 0.747991i \(-0.731018\pi\)
−0.663708 + 0.747991i \(0.731018\pi\)
\(368\) 0 0
\(369\) 69.6451 3.62558
\(370\) 0 0
\(371\) −16.4270 −0.852845
\(372\) 0 0
\(373\) 8.88444 0.460019 0.230009 0.973188i \(-0.426124\pi\)
0.230009 + 0.973188i \(0.426124\pi\)
\(374\) 0 0
\(375\) −29.3191 −1.51403
\(376\) 0 0
\(377\) −2.90436 −0.149582
\(378\) 0 0
\(379\) 11.3327 0.582124 0.291062 0.956704i \(-0.405991\pi\)
0.291062 + 0.956704i \(0.405991\pi\)
\(380\) 0 0
\(381\) −19.1780 −0.982518
\(382\) 0 0
\(383\) 36.9891 1.89005 0.945027 0.326993i \(-0.106035\pi\)
0.945027 + 0.326993i \(0.106035\pi\)
\(384\) 0 0
\(385\) −23.0574 −1.17511
\(386\) 0 0
\(387\) −33.1712 −1.68619
\(388\) 0 0
\(389\) 18.0378 0.914551 0.457276 0.889325i \(-0.348825\pi\)
0.457276 + 0.889325i \(0.348825\pi\)
\(390\) 0 0
\(391\) −4.18655 −0.211723
\(392\) 0 0
\(393\) −14.5517 −0.734036
\(394\) 0 0
\(395\) −9.44831 −0.475396
\(396\) 0 0
\(397\) −6.55850 −0.329161 −0.164581 0.986364i \(-0.552627\pi\)
−0.164581 + 0.986364i \(0.552627\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −28.2995 −1.41321 −0.706606 0.707608i \(-0.749774\pi\)
−0.706606 + 0.707608i \(0.749774\pi\)
\(402\) 0 0
\(403\) −3.88444 −0.193498
\(404\) 0 0
\(405\) −59.9992 −2.98138
\(406\) 0 0
\(407\) −14.6159 −0.724482
\(408\) 0 0
\(409\) −19.5972 −0.969019 −0.484510 0.874786i \(-0.661002\pi\)
−0.484510 + 0.874786i \(0.661002\pi\)
\(410\) 0 0
\(411\) 22.0874 1.08949
\(412\) 0 0
\(413\) 32.7178 1.60994
\(414\) 0 0
\(415\) 6.24897 0.306750
\(416\) 0 0
\(417\) −54.5776 −2.67268
\(418\) 0 0
\(419\) −7.94450 −0.388114 −0.194057 0.980990i \(-0.562165\pi\)
−0.194057 + 0.980990i \(0.562165\pi\)
\(420\) 0 0
\(421\) 13.0642 0.636709 0.318355 0.947972i \(-0.396870\pi\)
0.318355 + 0.947972i \(0.396870\pi\)
\(422\) 0 0
\(423\) −53.1421 −2.58386
\(424\) 0 0
\(425\) −1.35235 −0.0655986
\(426\) 0 0
\(427\) 24.7861 1.19948
\(428\) 0 0
\(429\) −6.34318 −0.306251
\(430\) 0 0
\(431\) −12.0865 −0.582185 −0.291092 0.956695i \(-0.594019\pi\)
−0.291092 + 0.956695i \(0.594019\pi\)
\(432\) 0 0
\(433\) 21.0077 1.00957 0.504784 0.863246i \(-0.331572\pi\)
0.504784 + 0.863246i \(0.331572\pi\)
\(434\) 0 0
\(435\) 28.3337 1.35850
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 3.02734 0.144487 0.0722436 0.997387i \(-0.476984\pi\)
0.0722436 + 0.997387i \(0.476984\pi\)
\(440\) 0 0
\(441\) 59.6596 2.84093
\(442\) 0 0
\(443\) 8.56212 0.406799 0.203399 0.979096i \(-0.434801\pi\)
0.203399 + 0.979096i \(0.434801\pi\)
\(444\) 0 0
\(445\) −5.78106 −0.274048
\(446\) 0 0
\(447\) −0.0249771 −0.00118137
\(448\) 0 0
\(449\) 23.0624 1.08838 0.544192 0.838961i \(-0.316836\pi\)
0.544192 + 0.838961i \(0.316836\pi\)
\(450\) 0 0
\(451\) −22.0574 −1.03864
\(452\) 0 0
\(453\) −17.5800 −0.825979
\(454\) 0 0
\(455\) −8.22668 −0.385673
\(456\) 0 0
\(457\) −25.4953 −1.19262 −0.596309 0.802755i \(-0.703367\pi\)
−0.596309 + 0.802755i \(0.703367\pi\)
\(458\) 0 0
\(459\) 13.6382 0.636575
\(460\) 0 0
\(461\) −36.0874 −1.68076 −0.840379 0.541999i \(-0.817668\pi\)
−0.840379 + 0.541999i \(0.817668\pi\)
\(462\) 0 0
\(463\) 41.5390 1.93048 0.965241 0.261362i \(-0.0841718\pi\)
0.965241 + 0.261362i \(0.0841718\pi\)
\(464\) 0 0
\(465\) 37.8949 1.75733
\(466\) 0 0
\(467\) 6.51073 0.301281 0.150640 0.988589i \(-0.451866\pi\)
0.150640 + 0.988589i \(0.451866\pi\)
\(468\) 0 0
\(469\) −52.6127 −2.42943
\(470\) 0 0
\(471\) 76.1376 3.50824
\(472\) 0 0
\(473\) 10.5057 0.483052
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 31.3833 1.43694
\(478\) 0 0
\(479\) 18.3874 0.840143 0.420072 0.907491i \(-0.362005\pi\)
0.420072 + 0.907491i \(0.362005\pi\)
\(480\) 0 0
\(481\) −5.21482 −0.237775
\(482\) 0 0
\(483\) 54.6965 2.48878
\(484\) 0 0
\(485\) −0.448311 −0.0203567
\(486\) 0 0
\(487\) −33.7324 −1.52856 −0.764280 0.644885i \(-0.776905\pi\)
−0.764280 + 0.644885i \(0.776905\pi\)
\(488\) 0 0
\(489\) 64.3678 2.91081
\(490\) 0 0
\(491\) 13.9281 0.628566 0.314283 0.949329i \(-0.398236\pi\)
0.314283 + 0.949329i \(0.398236\pi\)
\(492\) 0 0
\(493\) −3.32264 −0.149644
\(494\) 0 0
\(495\) 44.0506 1.97993
\(496\) 0 0
\(497\) −33.1189 −1.48558
\(498\) 0 0
\(499\) −33.9377 −1.51926 −0.759630 0.650356i \(-0.774620\pi\)
−0.759630 + 0.650356i \(0.774620\pi\)
\(500\) 0 0
\(501\) −1.76382 −0.0788018
\(502\) 0 0
\(503\) −8.78342 −0.391633 −0.195817 0.980641i \(-0.562736\pi\)
−0.195817 + 0.980641i \(0.562736\pi\)
\(504\) 0 0
\(505\) 9.92902 0.441835
\(506\) 0 0
\(507\) 39.6837 1.76241
\(508\) 0 0
\(509\) 24.3233 1.07811 0.539055 0.842271i \(-0.318782\pi\)
0.539055 + 0.842271i \(0.318782\pi\)
\(510\) 0 0
\(511\) −34.5526 −1.52852
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 29.7374 1.31039
\(516\) 0 0
\(517\) 16.8307 0.740213
\(518\) 0 0
\(519\) 36.6554 1.60899
\(520\) 0 0
\(521\) −4.12836 −0.180867 −0.0904333 0.995903i \(-0.528825\pi\)
−0.0904333 + 0.995903i \(0.528825\pi\)
\(522\) 0 0
\(523\) 38.8161 1.69731 0.848656 0.528946i \(-0.177412\pi\)
0.848656 + 0.528946i \(0.177412\pi\)
\(524\) 0 0
\(525\) 17.6682 0.771103
\(526\) 0 0
\(527\) −4.44387 −0.193578
\(528\) 0 0
\(529\) −3.90673 −0.169858
\(530\) 0 0
\(531\) −62.5066 −2.71256
\(532\) 0 0
\(533\) −7.86989 −0.340883
\(534\) 0 0
\(535\) 40.7452 1.76157
\(536\) 0 0
\(537\) −5.95399 −0.256934
\(538\) 0 0
\(539\) −18.8949 −0.813860
\(540\) 0 0
\(541\) −36.9932 −1.59046 −0.795231 0.606307i \(-0.792650\pi\)
−0.795231 + 0.606307i \(0.792650\pi\)
\(542\) 0 0
\(543\) −14.7837 −0.634431
\(544\) 0 0
\(545\) 26.9172 1.15300
\(546\) 0 0
\(547\) 23.4183 1.00129 0.500647 0.865652i \(-0.333096\pi\)
0.500647 + 0.865652i \(0.333096\pi\)
\(548\) 0 0
\(549\) −47.3533 −2.02099
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −14.4757 −0.615567
\(554\) 0 0
\(555\) 50.8735 2.15946
\(556\) 0 0
\(557\) −19.2968 −0.817634 −0.408817 0.912616i \(-0.634058\pi\)
−0.408817 + 0.912616i \(0.634058\pi\)
\(558\) 0 0
\(559\) 3.74834 0.158538
\(560\) 0 0
\(561\) −7.25671 −0.306379
\(562\) 0 0
\(563\) 15.8753 0.669063 0.334531 0.942385i \(-0.391422\pi\)
0.334531 + 0.942385i \(0.391422\pi\)
\(564\) 0 0
\(565\) −14.2267 −0.598521
\(566\) 0 0
\(567\) −91.9241 −3.86045
\(568\) 0 0
\(569\) −11.8571 −0.497075 −0.248538 0.968622i \(-0.579950\pi\)
−0.248538 + 0.968622i \(0.579950\pi\)
\(570\) 0 0
\(571\) 12.0291 0.503402 0.251701 0.967805i \(-0.419010\pi\)
0.251701 + 0.967805i \(0.419010\pi\)
\(572\) 0 0
\(573\) −6.73236 −0.281248
\(574\) 0 0
\(575\) 6.16756 0.257205
\(576\) 0 0
\(577\) −28.2327 −1.17534 −0.587671 0.809100i \(-0.699955\pi\)
−0.587671 + 0.809100i \(0.699955\pi\)
\(578\) 0 0
\(579\) 81.1781 3.37365
\(580\) 0 0
\(581\) 9.57398 0.397196
\(582\) 0 0
\(583\) −9.93944 −0.411650
\(584\) 0 0
\(585\) 15.7169 0.649813
\(586\) 0 0
\(587\) 31.2942 1.29165 0.645824 0.763486i \(-0.276514\pi\)
0.645824 + 0.763486i \(0.276514\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −80.1207 −3.29573
\(592\) 0 0
\(593\) −11.5330 −0.473604 −0.236802 0.971558i \(-0.576099\pi\)
−0.236802 + 0.971558i \(0.576099\pi\)
\(594\) 0 0
\(595\) −9.41147 −0.385833
\(596\) 0 0
\(597\) −40.0892 −1.64074
\(598\) 0 0
\(599\) 2.69635 0.110170 0.0550849 0.998482i \(-0.482457\pi\)
0.0550849 + 0.998482i \(0.482457\pi\)
\(600\) 0 0
\(601\) −5.76053 −0.234977 −0.117488 0.993074i \(-0.537484\pi\)
−0.117488 + 0.993074i \(0.537484\pi\)
\(602\) 0 0
\(603\) 100.515 4.09330
\(604\) 0 0
\(605\) 13.9017 0.565183
\(606\) 0 0
\(607\) 11.7510 0.476960 0.238480 0.971147i \(-0.423351\pi\)
0.238480 + 0.971147i \(0.423351\pi\)
\(608\) 0 0
\(609\) 43.4097 1.75905
\(610\) 0 0
\(611\) 6.00505 0.242938
\(612\) 0 0
\(613\) −14.3013 −0.577624 −0.288812 0.957386i \(-0.593260\pi\)
−0.288812 + 0.957386i \(0.593260\pi\)
\(614\) 0 0
\(615\) 76.7752 3.09587
\(616\) 0 0
\(617\) −31.3337 −1.26145 −0.630723 0.776008i \(-0.717242\pi\)
−0.630723 + 0.776008i \(0.717242\pi\)
\(618\) 0 0
\(619\) 15.3155 0.615582 0.307791 0.951454i \(-0.400410\pi\)
0.307791 + 0.951454i \(0.400410\pi\)
\(620\) 0 0
\(621\) −62.1985 −2.49594
\(622\) 0 0
\(623\) −8.85710 −0.354852
\(624\) 0 0
\(625\) −30.0651 −1.20260
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.96585 −0.237874
\(630\) 0 0
\(631\) 2.02910 0.0807770 0.0403885 0.999184i \(-0.487140\pi\)
0.0403885 + 0.999184i \(0.487140\pi\)
\(632\) 0 0
\(633\) −5.95399 −0.236650
\(634\) 0 0
\(635\) −15.0496 −0.597226
\(636\) 0 0
\(637\) −6.74153 −0.267109
\(638\) 0 0
\(639\) 63.2728 2.50303
\(640\) 0 0
\(641\) 3.87939 0.153227 0.0766133 0.997061i \(-0.475589\pi\)
0.0766133 + 0.997061i \(0.475589\pi\)
\(642\) 0 0
\(643\) −17.3841 −0.685563 −0.342782 0.939415i \(-0.611369\pi\)
−0.342782 + 0.939415i \(0.611369\pi\)
\(644\) 0 0
\(645\) −36.5672 −1.43983
\(646\) 0 0
\(647\) 27.3414 1.07490 0.537451 0.843295i \(-0.319387\pi\)
0.537451 + 0.843295i \(0.319387\pi\)
\(648\) 0 0
\(649\) 19.7965 0.777082
\(650\) 0 0
\(651\) 58.0583 2.27548
\(652\) 0 0
\(653\) 29.0702 1.13760 0.568802 0.822475i \(-0.307407\pi\)
0.568802 + 0.822475i \(0.307407\pi\)
\(654\) 0 0
\(655\) −11.4192 −0.446186
\(656\) 0 0
\(657\) 66.0120 2.57537
\(658\) 0 0
\(659\) −32.1411 −1.25204 −0.626021 0.779806i \(-0.715317\pi\)
−0.626021 + 0.779806i \(0.715317\pi\)
\(660\) 0 0
\(661\) −38.8084 −1.50947 −0.754736 0.656029i \(-0.772235\pi\)
−0.754736 + 0.656029i \(0.772235\pi\)
\(662\) 0 0
\(663\) −2.58914 −0.100554
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 15.1533 0.586739
\(668\) 0 0
\(669\) 46.1121 1.78279
\(670\) 0 0
\(671\) 14.9973 0.578965
\(672\) 0 0
\(673\) −11.1702 −0.430581 −0.215291 0.976550i \(-0.569070\pi\)
−0.215291 + 0.976550i \(0.569070\pi\)
\(674\) 0 0
\(675\) −20.0915 −0.773323
\(676\) 0 0
\(677\) 28.6932 1.10277 0.551384 0.834252i \(-0.314100\pi\)
0.551384 + 0.834252i \(0.314100\pi\)
\(678\) 0 0
\(679\) −0.686852 −0.0263590
\(680\) 0 0
\(681\) 53.8931 2.06519
\(682\) 0 0
\(683\) 12.3550 0.472752 0.236376 0.971662i \(-0.424040\pi\)
0.236376 + 0.971662i \(0.424040\pi\)
\(684\) 0 0
\(685\) 17.3327 0.662250
\(686\) 0 0
\(687\) −17.1821 −0.655538
\(688\) 0 0
\(689\) −3.54631 −0.135104
\(690\) 0 0
\(691\) 10.7000 0.407046 0.203523 0.979070i \(-0.434761\pi\)
0.203523 + 0.979070i \(0.434761\pi\)
\(692\) 0 0
\(693\) 67.4894 2.56371
\(694\) 0 0
\(695\) −42.8289 −1.62459
\(696\) 0 0
\(697\) −9.00330 −0.341024
\(698\) 0 0
\(699\) −95.1585 −3.59922
\(700\) 0 0
\(701\) 19.8007 0.747861 0.373930 0.927457i \(-0.378010\pi\)
0.373930 + 0.927457i \(0.378010\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −58.5827 −2.20635
\(706\) 0 0
\(707\) 15.2121 0.572111
\(708\) 0 0
\(709\) 11.9145 0.447457 0.223729 0.974651i \(-0.428177\pi\)
0.223729 + 0.974651i \(0.428177\pi\)
\(710\) 0 0
\(711\) 27.6554 1.03716
\(712\) 0 0
\(713\) 20.2668 0.758998
\(714\) 0 0
\(715\) −4.97771 −0.186156
\(716\) 0 0
\(717\) −60.2113 −2.24863
\(718\) 0 0
\(719\) 46.8648 1.74776 0.873882 0.486139i \(-0.161595\pi\)
0.873882 + 0.486139i \(0.161595\pi\)
\(720\) 0 0
\(721\) 45.5604 1.69676
\(722\) 0 0
\(723\) −34.8340 −1.29549
\(724\) 0 0
\(725\) 4.89487 0.181791
\(726\) 0 0
\(727\) −16.3824 −0.607589 −0.303794 0.952738i \(-0.598254\pi\)
−0.303794 + 0.952738i \(0.598254\pi\)
\(728\) 0 0
\(729\) 37.8289 1.40107
\(730\) 0 0
\(731\) 4.28817 0.158604
\(732\) 0 0
\(733\) 26.7006 0.986208 0.493104 0.869970i \(-0.335862\pi\)
0.493104 + 0.869970i \(0.335862\pi\)
\(734\) 0 0
\(735\) 65.7674 2.42587
\(736\) 0 0
\(737\) −31.8343 −1.17263
\(738\) 0 0
\(739\) −13.1530 −0.483841 −0.241921 0.970296i \(-0.577777\pi\)
−0.241921 + 0.970296i \(0.577777\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.15745 −0.0424628 −0.0212314 0.999775i \(-0.506759\pi\)
−0.0212314 + 0.999775i \(0.506759\pi\)
\(744\) 0 0
\(745\) −0.0196004 −0.000718102 0
\(746\) 0 0
\(747\) −18.2909 −0.669228
\(748\) 0 0
\(749\) 62.4252 2.28097
\(750\) 0 0
\(751\) 45.8708 1.67385 0.836925 0.547317i \(-0.184351\pi\)
0.836925 + 0.547317i \(0.184351\pi\)
\(752\) 0 0
\(753\) −34.1908 −1.24598
\(754\) 0 0
\(755\) −13.7956 −0.502074
\(756\) 0 0
\(757\) −47.2449 −1.71714 −0.858572 0.512694i \(-0.828648\pi\)
−0.858572 + 0.512694i \(0.828648\pi\)
\(758\) 0 0
\(759\) 33.0951 1.20128
\(760\) 0 0
\(761\) −18.9495 −0.686921 −0.343460 0.939167i \(-0.611599\pi\)
−0.343460 + 0.939167i \(0.611599\pi\)
\(762\) 0 0
\(763\) 41.2395 1.49297
\(764\) 0 0
\(765\) 17.9804 0.650083
\(766\) 0 0
\(767\) 7.06324 0.255039
\(768\) 0 0
\(769\) −50.4270 −1.81844 −0.909221 0.416313i \(-0.863322\pi\)
−0.909221 + 0.416313i \(0.863322\pi\)
\(770\) 0 0
\(771\) 6.05550 0.218084
\(772\) 0 0
\(773\) 42.1138 1.51473 0.757364 0.652993i \(-0.226487\pi\)
0.757364 + 0.652993i \(0.226487\pi\)
\(774\) 0 0
\(775\) 6.54664 0.235162
\(776\) 0 0
\(777\) 77.9427 2.79618
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −20.0392 −0.717059
\(782\) 0 0
\(783\) −49.3637 −1.76412
\(784\) 0 0
\(785\) 59.7478 2.13249
\(786\) 0 0
\(787\) 9.15663 0.326399 0.163199 0.986593i \(-0.447819\pi\)
0.163199 + 0.986593i \(0.447819\pi\)
\(788\) 0 0
\(789\) −26.7769 −0.953284
\(790\) 0 0
\(791\) −21.7965 −0.774996
\(792\) 0 0
\(793\) 5.35092 0.190017
\(794\) 0 0
\(795\) 34.5963 1.22700
\(796\) 0 0
\(797\) −31.8708 −1.12892 −0.564461 0.825460i \(-0.690916\pi\)
−0.564461 + 0.825460i \(0.690916\pi\)
\(798\) 0 0
\(799\) 6.86989 0.243039
\(800\) 0 0
\(801\) 16.9213 0.597884
\(802\) 0 0
\(803\) −20.9067 −0.737782
\(804\) 0 0
\(805\) 42.9222 1.51281
\(806\) 0 0
\(807\) −46.8022 −1.64752
\(808\) 0 0
\(809\) 14.1010 0.495765 0.247883 0.968790i \(-0.420265\pi\)
0.247883 + 0.968790i \(0.420265\pi\)
\(810\) 0 0
\(811\) −15.9186 −0.558977 −0.279489 0.960149i \(-0.590165\pi\)
−0.279489 + 0.960149i \(0.590165\pi\)
\(812\) 0 0
\(813\) −49.1566 −1.72400
\(814\) 0 0
\(815\) 50.5117 1.76935
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 24.0797 0.841411
\(820\) 0 0
\(821\) 17.4507 0.609033 0.304516 0.952507i \(-0.401505\pi\)
0.304516 + 0.952507i \(0.401505\pi\)
\(822\) 0 0
\(823\) −31.3824 −1.09392 −0.546960 0.837158i \(-0.684215\pi\)
−0.546960 + 0.837158i \(0.684215\pi\)
\(824\) 0 0
\(825\) 10.6905 0.372195
\(826\) 0 0
\(827\) −18.0933 −0.629165 −0.314582 0.949230i \(-0.601864\pi\)
−0.314582 + 0.949230i \(0.601864\pi\)
\(828\) 0 0
\(829\) −20.6290 −0.716474 −0.358237 0.933631i \(-0.616622\pi\)
−0.358237 + 0.933631i \(0.616622\pi\)
\(830\) 0 0
\(831\) −9.09245 −0.315414
\(832\) 0 0
\(833\) −7.71244 −0.267220
\(834\) 0 0
\(835\) −1.38413 −0.0478999
\(836\) 0 0
\(837\) −66.0215 −2.28204
\(838\) 0 0
\(839\) −48.6478 −1.67951 −0.839754 0.542968i \(-0.817301\pi\)
−0.839754 + 0.542968i \(0.817301\pi\)
\(840\) 0 0
\(841\) −16.9736 −0.585296
\(842\) 0 0
\(843\) −25.1539 −0.866348
\(844\) 0 0
\(845\) 31.1411 1.07129
\(846\) 0 0
\(847\) 21.2986 0.731829
\(848\) 0 0
\(849\) 67.5150 2.31711
\(850\) 0 0
\(851\) 27.2080 0.932679
\(852\) 0 0
\(853\) −31.2600 −1.07032 −0.535161 0.844750i \(-0.679749\pi\)
−0.535161 + 0.844750i \(0.679749\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.9881 0.443666 0.221833 0.975085i \(-0.428796\pi\)
0.221833 + 0.975085i \(0.428796\pi\)
\(858\) 0 0
\(859\) −44.0419 −1.50269 −0.751345 0.659910i \(-0.770595\pi\)
−0.751345 + 0.659910i \(0.770595\pi\)
\(860\) 0 0
\(861\) 117.626 4.00870
\(862\) 0 0
\(863\) −1.25166 −0.0426070 −0.0213035 0.999773i \(-0.506782\pi\)
−0.0213035 + 0.999773i \(0.506782\pi\)
\(864\) 0 0
\(865\) 28.7648 0.978031
\(866\) 0 0
\(867\) 51.8916 1.76233
\(868\) 0 0
\(869\) −8.75877 −0.297121
\(870\) 0 0
\(871\) −11.3582 −0.384859
\(872\) 0 0
\(873\) 1.31221 0.0444117
\(874\) 0 0
\(875\) −35.2499 −1.19166
\(876\) 0 0
\(877\) −10.5457 −0.356103 −0.178052 0.984021i \(-0.556979\pi\)
−0.178052 + 0.984021i \(0.556979\pi\)
\(878\) 0 0
\(879\) 89.8977 3.03217
\(880\) 0 0
\(881\) −10.6973 −0.360401 −0.180200 0.983630i \(-0.557675\pi\)
−0.180200 + 0.983630i \(0.557675\pi\)
\(882\) 0 0
\(883\) −28.6382 −0.963751 −0.481875 0.876240i \(-0.660044\pi\)
−0.481875 + 0.876240i \(0.660044\pi\)
\(884\) 0 0
\(885\) −68.9059 −2.31625
\(886\) 0 0
\(887\) 16.0327 0.538326 0.269163 0.963095i \(-0.413253\pi\)
0.269163 + 0.963095i \(0.413253\pi\)
\(888\) 0 0
\(889\) −23.0574 −0.773319
\(890\) 0 0
\(891\) −55.6204 −1.86335
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −4.67230 −0.156178
\(896\) 0 0
\(897\) 11.8081 0.394260
\(898\) 0 0
\(899\) 16.0847 0.536455
\(900\) 0 0
\(901\) −4.05705 −0.135160
\(902\) 0 0
\(903\) −56.0242 −1.86437
\(904\) 0 0
\(905\) −11.6013 −0.385641
\(906\) 0 0
\(907\) −10.0520 −0.333771 −0.166885 0.985976i \(-0.553371\pi\)
−0.166885 + 0.985976i \(0.553371\pi\)
\(908\) 0 0
\(909\) −29.0624 −0.963940
\(910\) 0 0
\(911\) 3.46379 0.114761 0.0573803 0.998352i \(-0.481725\pi\)
0.0573803 + 0.998352i \(0.481725\pi\)
\(912\) 0 0
\(913\) 5.79292 0.191718
\(914\) 0 0
\(915\) −52.2012 −1.72572
\(916\) 0 0
\(917\) −17.4953 −0.577744
\(918\) 0 0
\(919\) −4.56799 −0.150684 −0.0753421 0.997158i \(-0.524005\pi\)
−0.0753421 + 0.997158i \(0.524005\pi\)
\(920\) 0 0
\(921\) 45.0384 1.48407
\(922\) 0 0
\(923\) −7.14982 −0.235339
\(924\) 0 0
\(925\) 8.78880 0.288974
\(926\) 0 0
\(927\) −87.0420 −2.85883
\(928\) 0 0
\(929\) −35.7861 −1.17410 −0.587052 0.809549i \(-0.699712\pi\)
−0.587052 + 0.809549i \(0.699712\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 16.0615 0.525830
\(934\) 0 0
\(935\) −5.69459 −0.186233
\(936\) 0 0
\(937\) −38.5936 −1.26080 −0.630399 0.776272i \(-0.717109\pi\)
−0.630399 + 0.776272i \(0.717109\pi\)
\(938\) 0 0
\(939\) −6.04221 −0.197180
\(940\) 0 0
\(941\) −11.8075 −0.384912 −0.192456 0.981306i \(-0.561645\pi\)
−0.192456 + 0.981306i \(0.561645\pi\)
\(942\) 0 0
\(943\) 41.0607 1.33712
\(944\) 0 0
\(945\) −139.824 −4.54847
\(946\) 0 0
\(947\) −17.6372 −0.573133 −0.286566 0.958060i \(-0.592514\pi\)
−0.286566 + 0.958060i \(0.592514\pi\)
\(948\) 0 0
\(949\) −7.45935 −0.242141
\(950\) 0 0
\(951\) −97.4630 −3.16045
\(952\) 0 0
\(953\) −44.9231 −1.45520 −0.727602 0.686000i \(-0.759365\pi\)
−0.727602 + 0.686000i \(0.759365\pi\)
\(954\) 0 0
\(955\) −5.28312 −0.170958
\(956\) 0 0
\(957\) 26.2659 0.849055
\(958\) 0 0
\(959\) 26.5553 0.857516
\(960\) 0 0
\(961\) −9.48751 −0.306049
\(962\) 0 0
\(963\) −119.262 −3.84316
\(964\) 0 0
\(965\) 63.7033 2.05068
\(966\) 0 0
\(967\) 27.1242 0.872257 0.436128 0.899884i \(-0.356349\pi\)
0.436128 + 0.899884i \(0.356349\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −51.1052 −1.64005 −0.820023 0.572331i \(-0.806039\pi\)
−0.820023 + 0.572331i \(0.806039\pi\)
\(972\) 0 0
\(973\) −65.6177 −2.10361
\(974\) 0 0
\(975\) 3.81427 0.122155
\(976\) 0 0
\(977\) 14.5621 0.465883 0.232942 0.972491i \(-0.425165\pi\)
0.232942 + 0.972491i \(0.425165\pi\)
\(978\) 0 0
\(979\) −5.35916 −0.171279
\(980\) 0 0
\(981\) −78.7870 −2.51548
\(982\) 0 0
\(983\) −39.3100 −1.25379 −0.626897 0.779103i \(-0.715675\pi\)
−0.626897 + 0.779103i \(0.715675\pi\)
\(984\) 0 0
\(985\) −62.8735 −2.00332
\(986\) 0 0
\(987\) −89.7538 −2.85690
\(988\) 0 0
\(989\) −19.5567 −0.621868
\(990\) 0 0
\(991\) −48.3569 −1.53611 −0.768054 0.640385i \(-0.778775\pi\)
−0.768054 + 0.640385i \(0.778775\pi\)
\(992\) 0 0
\(993\) 31.4252 0.997249
\(994\) 0 0
\(995\) −31.4593 −0.997328
\(996\) 0 0
\(997\) 22.7110 0.719265 0.359632 0.933094i \(-0.382902\pi\)
0.359632 + 0.933094i \(0.382902\pi\)
\(998\) 0 0
\(999\) −88.6332 −2.80423
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.m.1.1 3
4.3 odd 2 5776.2.a.bs.1.3 3
19.2 odd 18 152.2.q.b.137.1 yes 6
19.10 odd 18 152.2.q.b.81.1 6
19.18 odd 2 2888.2.a.s.1.3 3
76.59 even 18 304.2.u.a.289.1 6
76.67 even 18 304.2.u.a.81.1 6
76.75 even 2 5776.2.a.bj.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.q.b.81.1 6 19.10 odd 18
152.2.q.b.137.1 yes 6 19.2 odd 18
304.2.u.a.81.1 6 76.67 even 18
304.2.u.a.289.1 6 76.59 even 18
2888.2.a.m.1.1 3 1.1 even 1 trivial
2888.2.a.s.1.3 3 19.18 odd 2
5776.2.a.bj.1.1 3 76.75 even 2
5776.2.a.bs.1.3 3 4.3 odd 2