Properties

Label 2888.2.a.i.1.2
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1,0,-2,0,4,0,-3,0,-11,0,-2,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034 q^{3} +1.23607 q^{5} +4.23607 q^{7} -2.61803 q^{9} -6.61803 q^{11} -5.47214 q^{13} +0.763932 q^{15} +2.76393 q^{17} +2.61803 q^{21} -0.854102 q^{23} -3.47214 q^{25} -3.47214 q^{27} +3.85410 q^{29} -6.61803 q^{31} -4.09017 q^{33} +5.23607 q^{35} -8.61803 q^{37} -3.38197 q^{39} -9.94427 q^{41} +1.61803 q^{43} -3.23607 q^{45} -0.708204 q^{47} +10.9443 q^{49} +1.70820 q^{51} -2.85410 q^{53} -8.18034 q^{55} -7.61803 q^{59} -6.70820 q^{61} -11.0902 q^{63} -6.76393 q^{65} +6.70820 q^{67} -0.527864 q^{69} +7.18034 q^{71} +12.2361 q^{73} -2.14590 q^{75} -28.0344 q^{77} -6.00000 q^{79} +5.70820 q^{81} +2.94427 q^{83} +3.41641 q^{85} +2.38197 q^{87} +6.70820 q^{89} -23.1803 q^{91} -4.09017 q^{93} -0.673762 q^{97} +17.3262 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 2 q^{5} + 4 q^{7} - 3 q^{9} - 11 q^{11} - 2 q^{13} + 6 q^{15} + 10 q^{17} + 3 q^{21} + 5 q^{23} + 2 q^{25} + 2 q^{27} + q^{29} - 11 q^{31} + 3 q^{33} + 6 q^{35} - 15 q^{37} - 9 q^{39} - 2 q^{41}+ \cdots + 19 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.618034 0.356822 0.178411 0.983956i \(-0.442904\pi\)
0.178411 + 0.983956i \(0.442904\pi\)
\(4\) 0 0
\(5\) 1.23607 0.552786 0.276393 0.961045i \(-0.410861\pi\)
0.276393 + 0.961045i \(0.410861\pi\)
\(6\) 0 0
\(7\) 4.23607 1.60108 0.800542 0.599277i \(-0.204545\pi\)
0.800542 + 0.599277i \(0.204545\pi\)
\(8\) 0 0
\(9\) −2.61803 −0.872678
\(10\) 0 0
\(11\) −6.61803 −1.99541 −0.997706 0.0676935i \(-0.978436\pi\)
−0.997706 + 0.0676935i \(0.978436\pi\)
\(12\) 0 0
\(13\) −5.47214 −1.51770 −0.758849 0.651267i \(-0.774238\pi\)
−0.758849 + 0.651267i \(0.774238\pi\)
\(14\) 0 0
\(15\) 0.763932 0.197246
\(16\) 0 0
\(17\) 2.76393 0.670352 0.335176 0.942156i \(-0.391204\pi\)
0.335176 + 0.942156i \(0.391204\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 2.61803 0.571302
\(22\) 0 0
\(23\) −0.854102 −0.178093 −0.0890463 0.996027i \(-0.528382\pi\)
−0.0890463 + 0.996027i \(0.528382\pi\)
\(24\) 0 0
\(25\) −3.47214 −0.694427
\(26\) 0 0
\(27\) −3.47214 −0.668213
\(28\) 0 0
\(29\) 3.85410 0.715689 0.357844 0.933781i \(-0.383512\pi\)
0.357844 + 0.933781i \(0.383512\pi\)
\(30\) 0 0
\(31\) −6.61803 −1.18863 −0.594317 0.804231i \(-0.702578\pi\)
−0.594317 + 0.804231i \(0.702578\pi\)
\(32\) 0 0
\(33\) −4.09017 −0.712007
\(34\) 0 0
\(35\) 5.23607 0.885057
\(36\) 0 0
\(37\) −8.61803 −1.41680 −0.708398 0.705813i \(-0.750582\pi\)
−0.708398 + 0.705813i \(0.750582\pi\)
\(38\) 0 0
\(39\) −3.38197 −0.541548
\(40\) 0 0
\(41\) −9.94427 −1.55303 −0.776517 0.630096i \(-0.783015\pi\)
−0.776517 + 0.630096i \(0.783015\pi\)
\(42\) 0 0
\(43\) 1.61803 0.246748 0.123374 0.992360i \(-0.460629\pi\)
0.123374 + 0.992360i \(0.460629\pi\)
\(44\) 0 0
\(45\) −3.23607 −0.482405
\(46\) 0 0
\(47\) −0.708204 −0.103302 −0.0516511 0.998665i \(-0.516448\pi\)
−0.0516511 + 0.998665i \(0.516448\pi\)
\(48\) 0 0
\(49\) 10.9443 1.56347
\(50\) 0 0
\(51\) 1.70820 0.239196
\(52\) 0 0
\(53\) −2.85410 −0.392041 −0.196021 0.980600i \(-0.562802\pi\)
−0.196021 + 0.980600i \(0.562802\pi\)
\(54\) 0 0
\(55\) −8.18034 −1.10304
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.61803 −0.991784 −0.495892 0.868384i \(-0.665159\pi\)
−0.495892 + 0.868384i \(0.665159\pi\)
\(60\) 0 0
\(61\) −6.70820 −0.858898 −0.429449 0.903091i \(-0.641292\pi\)
−0.429449 + 0.903091i \(0.641292\pi\)
\(62\) 0 0
\(63\) −11.0902 −1.39723
\(64\) 0 0
\(65\) −6.76393 −0.838963
\(66\) 0 0
\(67\) 6.70820 0.819538 0.409769 0.912189i \(-0.365609\pi\)
0.409769 + 0.912189i \(0.365609\pi\)
\(68\) 0 0
\(69\) −0.527864 −0.0635474
\(70\) 0 0
\(71\) 7.18034 0.852150 0.426075 0.904688i \(-0.359896\pi\)
0.426075 + 0.904688i \(0.359896\pi\)
\(72\) 0 0
\(73\) 12.2361 1.43212 0.716062 0.698037i \(-0.245943\pi\)
0.716062 + 0.698037i \(0.245943\pi\)
\(74\) 0 0
\(75\) −2.14590 −0.247787
\(76\) 0 0
\(77\) −28.0344 −3.19482
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) 5.70820 0.634245
\(82\) 0 0
\(83\) 2.94427 0.323176 0.161588 0.986858i \(-0.448338\pi\)
0.161588 + 0.986858i \(0.448338\pi\)
\(84\) 0 0
\(85\) 3.41641 0.370561
\(86\) 0 0
\(87\) 2.38197 0.255374
\(88\) 0 0
\(89\) 6.70820 0.711068 0.355534 0.934663i \(-0.384299\pi\)
0.355534 + 0.934663i \(0.384299\pi\)
\(90\) 0 0
\(91\) −23.1803 −2.42996
\(92\) 0 0
\(93\) −4.09017 −0.424131
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.673762 −0.0684102 −0.0342051 0.999415i \(-0.510890\pi\)
−0.0342051 + 0.999415i \(0.510890\pi\)
\(98\) 0 0
\(99\) 17.3262 1.74135
\(100\) 0 0
\(101\) 4.23607 0.421505 0.210752 0.977540i \(-0.432409\pi\)
0.210752 + 0.977540i \(0.432409\pi\)
\(102\) 0 0
\(103\) 4.85410 0.478289 0.239144 0.970984i \(-0.423133\pi\)
0.239144 + 0.970984i \(0.423133\pi\)
\(104\) 0 0
\(105\) 3.23607 0.315808
\(106\) 0 0
\(107\) 3.29180 0.318230 0.159115 0.987260i \(-0.449136\pi\)
0.159115 + 0.987260i \(0.449136\pi\)
\(108\) 0 0
\(109\) −4.23607 −0.405742 −0.202871 0.979206i \(-0.565027\pi\)
−0.202871 + 0.979206i \(0.565027\pi\)
\(110\) 0 0
\(111\) −5.32624 −0.505544
\(112\) 0 0
\(113\) 6.29180 0.591882 0.295941 0.955206i \(-0.404367\pi\)
0.295941 + 0.955206i \(0.404367\pi\)
\(114\) 0 0
\(115\) −1.05573 −0.0984472
\(116\) 0 0
\(117\) 14.3262 1.32446
\(118\) 0 0
\(119\) 11.7082 1.07329
\(120\) 0 0
\(121\) 32.7984 2.98167
\(122\) 0 0
\(123\) −6.14590 −0.554157
\(124\) 0 0
\(125\) −10.4721 −0.936656
\(126\) 0 0
\(127\) −9.00000 −0.798621 −0.399310 0.916816i \(-0.630750\pi\)
−0.399310 + 0.916816i \(0.630750\pi\)
\(128\) 0 0
\(129\) 1.00000 0.0880451
\(130\) 0 0
\(131\) −7.61803 −0.665591 −0.332795 0.942999i \(-0.607992\pi\)
−0.332795 + 0.942999i \(0.607992\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.29180 −0.369379
\(136\) 0 0
\(137\) 15.4721 1.32187 0.660937 0.750441i \(-0.270159\pi\)
0.660937 + 0.750441i \(0.270159\pi\)
\(138\) 0 0
\(139\) −10.8541 −0.920633 −0.460316 0.887755i \(-0.652264\pi\)
−0.460316 + 0.887755i \(0.652264\pi\)
\(140\) 0 0
\(141\) −0.437694 −0.0368605
\(142\) 0 0
\(143\) 36.2148 3.02843
\(144\) 0 0
\(145\) 4.76393 0.395623
\(146\) 0 0
\(147\) 6.76393 0.557880
\(148\) 0 0
\(149\) 13.3820 1.09629 0.548147 0.836382i \(-0.315334\pi\)
0.548147 + 0.836382i \(0.315334\pi\)
\(150\) 0 0
\(151\) −20.0902 −1.63491 −0.817457 0.575989i \(-0.804617\pi\)
−0.817457 + 0.575989i \(0.804617\pi\)
\(152\) 0 0
\(153\) −7.23607 −0.585001
\(154\) 0 0
\(155\) −8.18034 −0.657061
\(156\) 0 0
\(157\) 13.7984 1.10123 0.550615 0.834759i \(-0.314393\pi\)
0.550615 + 0.834759i \(0.314393\pi\)
\(158\) 0 0
\(159\) −1.76393 −0.139889
\(160\) 0 0
\(161\) −3.61803 −0.285141
\(162\) 0 0
\(163\) −14.4164 −1.12918 −0.564590 0.825371i \(-0.690966\pi\)
−0.564590 + 0.825371i \(0.690966\pi\)
\(164\) 0 0
\(165\) −5.05573 −0.393588
\(166\) 0 0
\(167\) 12.5279 0.969435 0.484718 0.874671i \(-0.338922\pi\)
0.484718 + 0.874671i \(0.338922\pi\)
\(168\) 0 0
\(169\) 16.9443 1.30341
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.4721 1.25235 0.626177 0.779681i \(-0.284619\pi\)
0.626177 + 0.779681i \(0.284619\pi\)
\(174\) 0 0
\(175\) −14.7082 −1.11184
\(176\) 0 0
\(177\) −4.70820 −0.353890
\(178\) 0 0
\(179\) −17.0000 −1.27064 −0.635320 0.772249i \(-0.719132\pi\)
−0.635320 + 0.772249i \(0.719132\pi\)
\(180\) 0 0
\(181\) −12.0000 −0.891953 −0.445976 0.895045i \(-0.647144\pi\)
−0.445976 + 0.895045i \(0.647144\pi\)
\(182\) 0 0
\(183\) −4.14590 −0.306474
\(184\) 0 0
\(185\) −10.6525 −0.783186
\(186\) 0 0
\(187\) −18.2918 −1.33763
\(188\) 0 0
\(189\) −14.7082 −1.06986
\(190\) 0 0
\(191\) 3.94427 0.285397 0.142699 0.989766i \(-0.454422\pi\)
0.142699 + 0.989766i \(0.454422\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) 0 0
\(195\) −4.18034 −0.299360
\(196\) 0 0
\(197\) −11.4721 −0.817356 −0.408678 0.912679i \(-0.634010\pi\)
−0.408678 + 0.912679i \(0.634010\pi\)
\(198\) 0 0
\(199\) −18.9443 −1.34292 −0.671462 0.741039i \(-0.734333\pi\)
−0.671462 + 0.741039i \(0.734333\pi\)
\(200\) 0 0
\(201\) 4.14590 0.292429
\(202\) 0 0
\(203\) 16.3262 1.14588
\(204\) 0 0
\(205\) −12.2918 −0.858496
\(206\) 0 0
\(207\) 2.23607 0.155417
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 4.09017 0.281579 0.140789 0.990040i \(-0.455036\pi\)
0.140789 + 0.990040i \(0.455036\pi\)
\(212\) 0 0
\(213\) 4.43769 0.304066
\(214\) 0 0
\(215\) 2.00000 0.136399
\(216\) 0 0
\(217\) −28.0344 −1.90310
\(218\) 0 0
\(219\) 7.56231 0.511013
\(220\) 0 0
\(221\) −15.1246 −1.01739
\(222\) 0 0
\(223\) −7.00000 −0.468755 −0.234377 0.972146i \(-0.575305\pi\)
−0.234377 + 0.972146i \(0.575305\pi\)
\(224\) 0 0
\(225\) 9.09017 0.606011
\(226\) 0 0
\(227\) −16.7082 −1.10896 −0.554481 0.832196i \(-0.687083\pi\)
−0.554481 + 0.832196i \(0.687083\pi\)
\(228\) 0 0
\(229\) 1.20163 0.0794057 0.0397028 0.999212i \(-0.487359\pi\)
0.0397028 + 0.999212i \(0.487359\pi\)
\(230\) 0 0
\(231\) −17.3262 −1.13998
\(232\) 0 0
\(233\) 21.4721 1.40669 0.703343 0.710850i \(-0.251690\pi\)
0.703343 + 0.710850i \(0.251690\pi\)
\(234\) 0 0
\(235\) −0.875388 −0.0571040
\(236\) 0 0
\(237\) −3.70820 −0.240874
\(238\) 0 0
\(239\) 6.27051 0.405606 0.202803 0.979220i \(-0.434995\pi\)
0.202803 + 0.979220i \(0.434995\pi\)
\(240\) 0 0
\(241\) −20.2361 −1.30352 −0.651760 0.758425i \(-0.725969\pi\)
−0.651760 + 0.758425i \(0.725969\pi\)
\(242\) 0 0
\(243\) 13.9443 0.894525
\(244\) 0 0
\(245\) 13.5279 0.864264
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 1.81966 0.115316
\(250\) 0 0
\(251\) −15.7639 −0.995011 −0.497505 0.867461i \(-0.665750\pi\)
−0.497505 + 0.867461i \(0.665750\pi\)
\(252\) 0 0
\(253\) 5.65248 0.355368
\(254\) 0 0
\(255\) 2.11146 0.132225
\(256\) 0 0
\(257\) −19.4164 −1.21116 −0.605581 0.795784i \(-0.707059\pi\)
−0.605581 + 0.795784i \(0.707059\pi\)
\(258\) 0 0
\(259\) −36.5066 −2.26841
\(260\) 0 0
\(261\) −10.0902 −0.624566
\(262\) 0 0
\(263\) 4.47214 0.275764 0.137882 0.990449i \(-0.455971\pi\)
0.137882 + 0.990449i \(0.455971\pi\)
\(264\) 0 0
\(265\) −3.52786 −0.216715
\(266\) 0 0
\(267\) 4.14590 0.253725
\(268\) 0 0
\(269\) 1.32624 0.0808622 0.0404311 0.999182i \(-0.487127\pi\)
0.0404311 + 0.999182i \(0.487127\pi\)
\(270\) 0 0
\(271\) −19.3820 −1.17737 −0.588685 0.808362i \(-0.700354\pi\)
−0.588685 + 0.808362i \(0.700354\pi\)
\(272\) 0 0
\(273\) −14.3262 −0.867063
\(274\) 0 0
\(275\) 22.9787 1.38567
\(276\) 0 0
\(277\) 7.41641 0.445609 0.222804 0.974863i \(-0.428479\pi\)
0.222804 + 0.974863i \(0.428479\pi\)
\(278\) 0 0
\(279\) 17.3262 1.03729
\(280\) 0 0
\(281\) −13.0902 −0.780894 −0.390447 0.920625i \(-0.627680\pi\)
−0.390447 + 0.920625i \(0.627680\pi\)
\(282\) 0 0
\(283\) −14.5623 −0.865639 −0.432820 0.901481i \(-0.642481\pi\)
−0.432820 + 0.901481i \(0.642481\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −42.1246 −2.48654
\(288\) 0 0
\(289\) −9.36068 −0.550628
\(290\) 0 0
\(291\) −0.416408 −0.0244103
\(292\) 0 0
\(293\) 4.85410 0.283580 0.141790 0.989897i \(-0.454714\pi\)
0.141790 + 0.989897i \(0.454714\pi\)
\(294\) 0 0
\(295\) −9.41641 −0.548244
\(296\) 0 0
\(297\) 22.9787 1.33336
\(298\) 0 0
\(299\) 4.67376 0.270291
\(300\) 0 0
\(301\) 6.85410 0.395064
\(302\) 0 0
\(303\) 2.61803 0.150402
\(304\) 0 0
\(305\) −8.29180 −0.474787
\(306\) 0 0
\(307\) 7.74265 0.441896 0.220948 0.975286i \(-0.429085\pi\)
0.220948 + 0.975286i \(0.429085\pi\)
\(308\) 0 0
\(309\) 3.00000 0.170664
\(310\) 0 0
\(311\) 17.7082 1.00414 0.502070 0.864827i \(-0.332572\pi\)
0.502070 + 0.864827i \(0.332572\pi\)
\(312\) 0 0
\(313\) 15.3820 0.869440 0.434720 0.900566i \(-0.356847\pi\)
0.434720 + 0.900566i \(0.356847\pi\)
\(314\) 0 0
\(315\) −13.7082 −0.772370
\(316\) 0 0
\(317\) −10.9443 −0.614692 −0.307346 0.951598i \(-0.599441\pi\)
−0.307346 + 0.951598i \(0.599441\pi\)
\(318\) 0 0
\(319\) −25.5066 −1.42809
\(320\) 0 0
\(321\) 2.03444 0.113551
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 19.0000 1.05393
\(326\) 0 0
\(327\) −2.61803 −0.144778
\(328\) 0 0
\(329\) −3.00000 −0.165395
\(330\) 0 0
\(331\) −7.52786 −0.413769 −0.206884 0.978365i \(-0.566332\pi\)
−0.206884 + 0.978365i \(0.566332\pi\)
\(332\) 0 0
\(333\) 22.5623 1.23641
\(334\) 0 0
\(335\) 8.29180 0.453029
\(336\) 0 0
\(337\) 26.1803 1.42613 0.713067 0.701096i \(-0.247306\pi\)
0.713067 + 0.701096i \(0.247306\pi\)
\(338\) 0 0
\(339\) 3.88854 0.211197
\(340\) 0 0
\(341\) 43.7984 2.37181
\(342\) 0 0
\(343\) 16.7082 0.902158
\(344\) 0 0
\(345\) −0.652476 −0.0351281
\(346\) 0 0
\(347\) 10.9443 0.587519 0.293760 0.955879i \(-0.405093\pi\)
0.293760 + 0.955879i \(0.405093\pi\)
\(348\) 0 0
\(349\) 15.1459 0.810741 0.405371 0.914152i \(-0.367142\pi\)
0.405371 + 0.914152i \(0.367142\pi\)
\(350\) 0 0
\(351\) 19.0000 1.01414
\(352\) 0 0
\(353\) 1.27051 0.0676224 0.0338112 0.999428i \(-0.489236\pi\)
0.0338112 + 0.999428i \(0.489236\pi\)
\(354\) 0 0
\(355\) 8.87539 0.471057
\(356\) 0 0
\(357\) 7.23607 0.382973
\(358\) 0 0
\(359\) −30.7984 −1.62548 −0.812738 0.582629i \(-0.802024\pi\)
−0.812738 + 0.582629i \(0.802024\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 20.2705 1.06393
\(364\) 0 0
\(365\) 15.1246 0.791658
\(366\) 0 0
\(367\) 12.7082 0.663363 0.331681 0.943391i \(-0.392384\pi\)
0.331681 + 0.943391i \(0.392384\pi\)
\(368\) 0 0
\(369\) 26.0344 1.35530
\(370\) 0 0
\(371\) −12.0902 −0.627690
\(372\) 0 0
\(373\) 28.8885 1.49579 0.747896 0.663816i \(-0.231064\pi\)
0.747896 + 0.663816i \(0.231064\pi\)
\(374\) 0 0
\(375\) −6.47214 −0.334220
\(376\) 0 0
\(377\) −21.0902 −1.08620
\(378\) 0 0
\(379\) 37.1246 1.90696 0.953482 0.301451i \(-0.0974710\pi\)
0.953482 + 0.301451i \(0.0974710\pi\)
\(380\) 0 0
\(381\) −5.56231 −0.284966
\(382\) 0 0
\(383\) 36.0344 1.84127 0.920637 0.390420i \(-0.127670\pi\)
0.920637 + 0.390420i \(0.127670\pi\)
\(384\) 0 0
\(385\) −34.6525 −1.76605
\(386\) 0 0
\(387\) −4.23607 −0.215331
\(388\) 0 0
\(389\) 0.673762 0.0341611 0.0170805 0.999854i \(-0.494563\pi\)
0.0170805 + 0.999854i \(0.494563\pi\)
\(390\) 0 0
\(391\) −2.36068 −0.119385
\(392\) 0 0
\(393\) −4.70820 −0.237497
\(394\) 0 0
\(395\) −7.41641 −0.373160
\(396\) 0 0
\(397\) −5.94427 −0.298334 −0.149167 0.988812i \(-0.547659\pi\)
−0.149167 + 0.988812i \(0.547659\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 23.8885 1.19294 0.596468 0.802637i \(-0.296570\pi\)
0.596468 + 0.802637i \(0.296570\pi\)
\(402\) 0 0
\(403\) 36.2148 1.80399
\(404\) 0 0
\(405\) 7.05573 0.350602
\(406\) 0 0
\(407\) 57.0344 2.82709
\(408\) 0 0
\(409\) −13.7082 −0.677827 −0.338914 0.940818i \(-0.610059\pi\)
−0.338914 + 0.940818i \(0.610059\pi\)
\(410\) 0 0
\(411\) 9.56231 0.471674
\(412\) 0 0
\(413\) −32.2705 −1.58793
\(414\) 0 0
\(415\) 3.63932 0.178647
\(416\) 0 0
\(417\) −6.70820 −0.328502
\(418\) 0 0
\(419\) 16.9443 0.827782 0.413891 0.910326i \(-0.364169\pi\)
0.413891 + 0.910326i \(0.364169\pi\)
\(420\) 0 0
\(421\) −23.9443 −1.16697 −0.583486 0.812123i \(-0.698312\pi\)
−0.583486 + 0.812123i \(0.698312\pi\)
\(422\) 0 0
\(423\) 1.85410 0.0901495
\(424\) 0 0
\(425\) −9.59675 −0.465511
\(426\) 0 0
\(427\) −28.4164 −1.37517
\(428\) 0 0
\(429\) 22.3820 1.08061
\(430\) 0 0
\(431\) −22.8885 −1.10250 −0.551251 0.834339i \(-0.685849\pi\)
−0.551251 + 0.834339i \(0.685849\pi\)
\(432\) 0 0
\(433\) 26.9787 1.29651 0.648257 0.761422i \(-0.275498\pi\)
0.648257 + 0.761422i \(0.275498\pi\)
\(434\) 0 0
\(435\) 2.94427 0.141167
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −30.3050 −1.44638 −0.723188 0.690651i \(-0.757324\pi\)
−0.723188 + 0.690651i \(0.757324\pi\)
\(440\) 0 0
\(441\) −28.6525 −1.36440
\(442\) 0 0
\(443\) −37.1803 −1.76649 −0.883246 0.468911i \(-0.844647\pi\)
−0.883246 + 0.468911i \(0.844647\pi\)
\(444\) 0 0
\(445\) 8.29180 0.393069
\(446\) 0 0
\(447\) 8.27051 0.391182
\(448\) 0 0
\(449\) 8.88854 0.419476 0.209738 0.977758i \(-0.432739\pi\)
0.209738 + 0.977758i \(0.432739\pi\)
\(450\) 0 0
\(451\) 65.8115 3.09894
\(452\) 0 0
\(453\) −12.4164 −0.583374
\(454\) 0 0
\(455\) −28.6525 −1.34325
\(456\) 0 0
\(457\) −29.1246 −1.36239 −0.681196 0.732101i \(-0.738540\pi\)
−0.681196 + 0.732101i \(0.738540\pi\)
\(458\) 0 0
\(459\) −9.59675 −0.447938
\(460\) 0 0
\(461\) −30.8328 −1.43603 −0.718014 0.696029i \(-0.754949\pi\)
−0.718014 + 0.696029i \(0.754949\pi\)
\(462\) 0 0
\(463\) −8.50658 −0.395334 −0.197667 0.980269i \(-0.563337\pi\)
−0.197667 + 0.980269i \(0.563337\pi\)
\(464\) 0 0
\(465\) −5.05573 −0.234454
\(466\) 0 0
\(467\) 14.2361 0.658767 0.329383 0.944196i \(-0.393159\pi\)
0.329383 + 0.944196i \(0.393159\pi\)
\(468\) 0 0
\(469\) 28.4164 1.31215
\(470\) 0 0
\(471\) 8.52786 0.392943
\(472\) 0 0
\(473\) −10.7082 −0.492364
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 7.47214 0.342126
\(478\) 0 0
\(479\) −11.6180 −0.530842 −0.265421 0.964133i \(-0.585511\pi\)
−0.265421 + 0.964133i \(0.585511\pi\)
\(480\) 0 0
\(481\) 47.1591 2.15027
\(482\) 0 0
\(483\) −2.23607 −0.101745
\(484\) 0 0
\(485\) −0.832816 −0.0378162
\(486\) 0 0
\(487\) 9.23607 0.418526 0.209263 0.977859i \(-0.432893\pi\)
0.209263 + 0.977859i \(0.432893\pi\)
\(488\) 0 0
\(489\) −8.90983 −0.402916
\(490\) 0 0
\(491\) −19.2705 −0.869666 −0.434833 0.900511i \(-0.643193\pi\)
−0.434833 + 0.900511i \(0.643193\pi\)
\(492\) 0 0
\(493\) 10.6525 0.479763
\(494\) 0 0
\(495\) 21.4164 0.962596
\(496\) 0 0
\(497\) 30.4164 1.36436
\(498\) 0 0
\(499\) −30.1803 −1.35106 −0.675529 0.737334i \(-0.736085\pi\)
−0.675529 + 0.737334i \(0.736085\pi\)
\(500\) 0 0
\(501\) 7.74265 0.345916
\(502\) 0 0
\(503\) 19.7639 0.881230 0.440615 0.897696i \(-0.354760\pi\)
0.440615 + 0.897696i \(0.354760\pi\)
\(504\) 0 0
\(505\) 5.23607 0.233002
\(506\) 0 0
\(507\) 10.4721 0.465084
\(508\) 0 0
\(509\) 41.8673 1.85573 0.927867 0.372912i \(-0.121641\pi\)
0.927867 + 0.372912i \(0.121641\pi\)
\(510\) 0 0
\(511\) 51.8328 2.29295
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.00000 0.264392
\(516\) 0 0
\(517\) 4.68692 0.206130
\(518\) 0 0
\(519\) 10.1803 0.446867
\(520\) 0 0
\(521\) −8.14590 −0.356878 −0.178439 0.983951i \(-0.557105\pi\)
−0.178439 + 0.983951i \(0.557105\pi\)
\(522\) 0 0
\(523\) −35.0689 −1.53346 −0.766728 0.641973i \(-0.778116\pi\)
−0.766728 + 0.641973i \(0.778116\pi\)
\(524\) 0 0
\(525\) −9.09017 −0.396728
\(526\) 0 0
\(527\) −18.2918 −0.796803
\(528\) 0 0
\(529\) −22.2705 −0.968283
\(530\) 0 0
\(531\) 19.9443 0.865508
\(532\) 0 0
\(533\) 54.4164 2.35704
\(534\) 0 0
\(535\) 4.06888 0.175913
\(536\) 0 0
\(537\) −10.5066 −0.453392
\(538\) 0 0
\(539\) −72.4296 −3.11976
\(540\) 0 0
\(541\) −34.4164 −1.47968 −0.739838 0.672785i \(-0.765098\pi\)
−0.739838 + 0.672785i \(0.765098\pi\)
\(542\) 0 0
\(543\) −7.41641 −0.318269
\(544\) 0 0
\(545\) −5.23607 −0.224289
\(546\) 0 0
\(547\) 7.56231 0.323341 0.161670 0.986845i \(-0.448312\pi\)
0.161670 + 0.986845i \(0.448312\pi\)
\(548\) 0 0
\(549\) 17.5623 0.749541
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −25.4164 −1.08082
\(554\) 0 0
\(555\) −6.58359 −0.279458
\(556\) 0 0
\(557\) −23.1803 −0.982183 −0.491091 0.871108i \(-0.663402\pi\)
−0.491091 + 0.871108i \(0.663402\pi\)
\(558\) 0 0
\(559\) −8.85410 −0.374489
\(560\) 0 0
\(561\) −11.3050 −0.477295
\(562\) 0 0
\(563\) −10.5836 −0.446045 −0.223023 0.974813i \(-0.571592\pi\)
−0.223023 + 0.974813i \(0.571592\pi\)
\(564\) 0 0
\(565\) 7.77709 0.327185
\(566\) 0 0
\(567\) 24.1803 1.01548
\(568\) 0 0
\(569\) −10.5623 −0.442795 −0.221397 0.975184i \(-0.571062\pi\)
−0.221397 + 0.975184i \(0.571062\pi\)
\(570\) 0 0
\(571\) −8.32624 −0.348442 −0.174221 0.984707i \(-0.555741\pi\)
−0.174221 + 0.984707i \(0.555741\pi\)
\(572\) 0 0
\(573\) 2.43769 0.101836
\(574\) 0 0
\(575\) 2.96556 0.123672
\(576\) 0 0
\(577\) −24.2361 −1.00896 −0.504480 0.863423i \(-0.668316\pi\)
−0.504480 + 0.863423i \(0.668316\pi\)
\(578\) 0 0
\(579\) −3.70820 −0.154108
\(580\) 0 0
\(581\) 12.4721 0.517431
\(582\) 0 0
\(583\) 18.8885 0.782284
\(584\) 0 0
\(585\) 17.7082 0.732144
\(586\) 0 0
\(587\) 17.8328 0.736039 0.368020 0.929818i \(-0.380036\pi\)
0.368020 + 0.929818i \(0.380036\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −7.09017 −0.291651
\(592\) 0 0
\(593\) −1.29180 −0.0530477 −0.0265239 0.999648i \(-0.508444\pi\)
−0.0265239 + 0.999648i \(0.508444\pi\)
\(594\) 0 0
\(595\) 14.4721 0.593300
\(596\) 0 0
\(597\) −11.7082 −0.479185
\(598\) 0 0
\(599\) −28.1246 −1.14914 −0.574570 0.818455i \(-0.694831\pi\)
−0.574570 + 0.818455i \(0.694831\pi\)
\(600\) 0 0
\(601\) −24.1803 −0.986337 −0.493168 0.869934i \(-0.664161\pi\)
−0.493168 + 0.869934i \(0.664161\pi\)
\(602\) 0 0
\(603\) −17.5623 −0.715192
\(604\) 0 0
\(605\) 40.5410 1.64823
\(606\) 0 0
\(607\) 31.3820 1.27375 0.636877 0.770965i \(-0.280226\pi\)
0.636877 + 0.770965i \(0.280226\pi\)
\(608\) 0 0
\(609\) 10.0902 0.408874
\(610\) 0 0
\(611\) 3.87539 0.156781
\(612\) 0 0
\(613\) 30.3050 1.22401 0.612003 0.790856i \(-0.290364\pi\)
0.612003 + 0.790856i \(0.290364\pi\)
\(614\) 0 0
\(615\) −7.59675 −0.306330
\(616\) 0 0
\(617\) 5.43769 0.218913 0.109457 0.993992i \(-0.465089\pi\)
0.109457 + 0.993992i \(0.465089\pi\)
\(618\) 0 0
\(619\) −15.0000 −0.602901 −0.301450 0.953482i \(-0.597471\pi\)
−0.301450 + 0.953482i \(0.597471\pi\)
\(620\) 0 0
\(621\) 2.96556 0.119004
\(622\) 0 0
\(623\) 28.4164 1.13848
\(624\) 0 0
\(625\) 4.41641 0.176656
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −23.8197 −0.949752
\(630\) 0 0
\(631\) −33.5410 −1.33525 −0.667623 0.744499i \(-0.732688\pi\)
−0.667623 + 0.744499i \(0.732688\pi\)
\(632\) 0 0
\(633\) 2.52786 0.100474
\(634\) 0 0
\(635\) −11.1246 −0.441467
\(636\) 0 0
\(637\) −59.8885 −2.37287
\(638\) 0 0
\(639\) −18.7984 −0.743652
\(640\) 0 0
\(641\) −4.61803 −0.182401 −0.0912007 0.995833i \(-0.529070\pi\)
−0.0912007 + 0.995833i \(0.529070\pi\)
\(642\) 0 0
\(643\) −24.1803 −0.953580 −0.476790 0.879017i \(-0.658200\pi\)
−0.476790 + 0.879017i \(0.658200\pi\)
\(644\) 0 0
\(645\) 1.23607 0.0486701
\(646\) 0 0
\(647\) 33.0689 1.30007 0.650036 0.759903i \(-0.274754\pi\)
0.650036 + 0.759903i \(0.274754\pi\)
\(648\) 0 0
\(649\) 50.4164 1.97902
\(650\) 0 0
\(651\) −17.3262 −0.679069
\(652\) 0 0
\(653\) −3.79837 −0.148642 −0.0743209 0.997234i \(-0.523679\pi\)
−0.0743209 + 0.997234i \(0.523679\pi\)
\(654\) 0 0
\(655\) −9.41641 −0.367930
\(656\) 0 0
\(657\) −32.0344 −1.24978
\(658\) 0 0
\(659\) −18.3607 −0.715231 −0.357615 0.933869i \(-0.616410\pi\)
−0.357615 + 0.933869i \(0.616410\pi\)
\(660\) 0 0
\(661\) 9.41641 0.366256 0.183128 0.983089i \(-0.441378\pi\)
0.183128 + 0.983089i \(0.441378\pi\)
\(662\) 0 0
\(663\) −9.34752 −0.363028
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −3.29180 −0.127459
\(668\) 0 0
\(669\) −4.32624 −0.167262
\(670\) 0 0
\(671\) 44.3951 1.71385
\(672\) 0 0
\(673\) 48.5967 1.87327 0.936633 0.350311i \(-0.113924\pi\)
0.936633 + 0.350311i \(0.113924\pi\)
\(674\) 0 0
\(675\) 12.0557 0.464025
\(676\) 0 0
\(677\) 14.5066 0.557533 0.278767 0.960359i \(-0.410074\pi\)
0.278767 + 0.960359i \(0.410074\pi\)
\(678\) 0 0
\(679\) −2.85410 −0.109530
\(680\) 0 0
\(681\) −10.3262 −0.395702
\(682\) 0 0
\(683\) 21.9443 0.839674 0.419837 0.907599i \(-0.362087\pi\)
0.419837 + 0.907599i \(0.362087\pi\)
\(684\) 0 0
\(685\) 19.1246 0.730714
\(686\) 0 0
\(687\) 0.742646 0.0283337
\(688\) 0 0
\(689\) 15.6180 0.595000
\(690\) 0 0
\(691\) −0.527864 −0.0200809 −0.0100404 0.999950i \(-0.503196\pi\)
−0.0100404 + 0.999950i \(0.503196\pi\)
\(692\) 0 0
\(693\) 73.3951 2.78805
\(694\) 0 0
\(695\) −13.4164 −0.508913
\(696\) 0 0
\(697\) −27.4853 −1.04108
\(698\) 0 0
\(699\) 13.2705 0.501937
\(700\) 0 0
\(701\) −0.201626 −0.00761531 −0.00380766 0.999993i \(-0.501212\pi\)
−0.00380766 + 0.999993i \(0.501212\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −0.541020 −0.0203760
\(706\) 0 0
\(707\) 17.9443 0.674864
\(708\) 0 0
\(709\) 16.3607 0.614438 0.307219 0.951639i \(-0.400602\pi\)
0.307219 + 0.951639i \(0.400602\pi\)
\(710\) 0 0
\(711\) 15.7082 0.589104
\(712\) 0 0
\(713\) 5.65248 0.211687
\(714\) 0 0
\(715\) 44.7639 1.67408
\(716\) 0 0
\(717\) 3.87539 0.144729
\(718\) 0 0
\(719\) −36.3262 −1.35474 −0.677370 0.735642i \(-0.736880\pi\)
−0.677370 + 0.735642i \(0.736880\pi\)
\(720\) 0 0
\(721\) 20.5623 0.765780
\(722\) 0 0
\(723\) −12.5066 −0.465125
\(724\) 0 0
\(725\) −13.3820 −0.496994
\(726\) 0 0
\(727\) 24.7639 0.918443 0.459222 0.888322i \(-0.348128\pi\)
0.459222 + 0.888322i \(0.348128\pi\)
\(728\) 0 0
\(729\) −8.50658 −0.315058
\(730\) 0 0
\(731\) 4.47214 0.165408
\(732\) 0 0
\(733\) −9.65248 −0.356522 −0.178261 0.983983i \(-0.557047\pi\)
−0.178261 + 0.983983i \(0.557047\pi\)
\(734\) 0 0
\(735\) 8.36068 0.308388
\(736\) 0 0
\(737\) −44.3951 −1.63532
\(738\) 0 0
\(739\) −9.06888 −0.333604 −0.166802 0.985990i \(-0.553344\pi\)
−0.166802 + 0.985990i \(0.553344\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 42.7082 1.56681 0.783406 0.621510i \(-0.213481\pi\)
0.783406 + 0.621510i \(0.213481\pi\)
\(744\) 0 0
\(745\) 16.5410 0.606016
\(746\) 0 0
\(747\) −7.70820 −0.282028
\(748\) 0 0
\(749\) 13.9443 0.509513
\(750\) 0 0
\(751\) 23.0902 0.842572 0.421286 0.906928i \(-0.361579\pi\)
0.421286 + 0.906928i \(0.361579\pi\)
\(752\) 0 0
\(753\) −9.74265 −0.355042
\(754\) 0 0
\(755\) −24.8328 −0.903759
\(756\) 0 0
\(757\) −46.7984 −1.70092 −0.850458 0.526043i \(-0.823675\pi\)
−0.850458 + 0.526043i \(0.823675\pi\)
\(758\) 0 0
\(759\) 3.49342 0.126803
\(760\) 0 0
\(761\) 49.8328 1.80644 0.903219 0.429180i \(-0.141197\pi\)
0.903219 + 0.429180i \(0.141197\pi\)
\(762\) 0 0
\(763\) −17.9443 −0.649626
\(764\) 0 0
\(765\) −8.94427 −0.323381
\(766\) 0 0
\(767\) 41.6869 1.50523
\(768\) 0 0
\(769\) −27.3820 −0.987419 −0.493709 0.869627i \(-0.664359\pi\)
−0.493709 + 0.869627i \(0.664359\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 0 0
\(773\) 3.43769 0.123645 0.0618226 0.998087i \(-0.480309\pi\)
0.0618226 + 0.998087i \(0.480309\pi\)
\(774\) 0 0
\(775\) 22.9787 0.825420
\(776\) 0 0
\(777\) −22.5623 −0.809418
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −47.5197 −1.70039
\(782\) 0 0
\(783\) −13.3820 −0.478232
\(784\) 0 0
\(785\) 17.0557 0.608745
\(786\) 0 0
\(787\) −43.3050 −1.54365 −0.771827 0.635832i \(-0.780657\pi\)
−0.771827 + 0.635832i \(0.780657\pi\)
\(788\) 0 0
\(789\) 2.76393 0.0983986
\(790\) 0 0
\(791\) 26.6525 0.947653
\(792\) 0 0
\(793\) 36.7082 1.30355
\(794\) 0 0
\(795\) −2.18034 −0.0773287
\(796\) 0 0
\(797\) 34.0689 1.20678 0.603391 0.797446i \(-0.293816\pi\)
0.603391 + 0.797446i \(0.293816\pi\)
\(798\) 0 0
\(799\) −1.95743 −0.0692488
\(800\) 0 0
\(801\) −17.5623 −0.620534
\(802\) 0 0
\(803\) −80.9787 −2.85768
\(804\) 0 0
\(805\) −4.47214 −0.157622
\(806\) 0 0
\(807\) 0.819660 0.0288534
\(808\) 0 0
\(809\) −1.50658 −0.0529685 −0.0264842 0.999649i \(-0.508431\pi\)
−0.0264842 + 0.999649i \(0.508431\pi\)
\(810\) 0 0
\(811\) 1.25735 0.0441517 0.0220758 0.999756i \(-0.492972\pi\)
0.0220758 + 0.999756i \(0.492972\pi\)
\(812\) 0 0
\(813\) −11.9787 −0.420112
\(814\) 0 0
\(815\) −17.8197 −0.624195
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 60.6869 2.12057
\(820\) 0 0
\(821\) 0.257354 0.00898172 0.00449086 0.999990i \(-0.498571\pi\)
0.00449086 + 0.999990i \(0.498571\pi\)
\(822\) 0 0
\(823\) 19.2361 0.670527 0.335264 0.942124i \(-0.391175\pi\)
0.335264 + 0.942124i \(0.391175\pi\)
\(824\) 0 0
\(825\) 14.2016 0.494437
\(826\) 0 0
\(827\) −36.4164 −1.26632 −0.633161 0.774020i \(-0.718243\pi\)
−0.633161 + 0.774020i \(0.718243\pi\)
\(828\) 0 0
\(829\) 33.5623 1.16567 0.582834 0.812592i \(-0.301944\pi\)
0.582834 + 0.812592i \(0.301944\pi\)
\(830\) 0 0
\(831\) 4.58359 0.159003
\(832\) 0 0
\(833\) 30.2492 1.04807
\(834\) 0 0
\(835\) 15.4853 0.535891
\(836\) 0 0
\(837\) 22.9787 0.794261
\(838\) 0 0
\(839\) 14.9230 0.515199 0.257599 0.966252i \(-0.417069\pi\)
0.257599 + 0.966252i \(0.417069\pi\)
\(840\) 0 0
\(841\) −14.1459 −0.487790
\(842\) 0 0
\(843\) −8.09017 −0.278640
\(844\) 0 0
\(845\) 20.9443 0.720505
\(846\) 0 0
\(847\) 138.936 4.77390
\(848\) 0 0
\(849\) −9.00000 −0.308879
\(850\) 0 0
\(851\) 7.36068 0.252321
\(852\) 0 0
\(853\) 11.1803 0.382808 0.191404 0.981511i \(-0.438696\pi\)
0.191404 + 0.981511i \(0.438696\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 58.0476 1.98287 0.991434 0.130608i \(-0.0416930\pi\)
0.991434 + 0.130608i \(0.0416930\pi\)
\(858\) 0 0
\(859\) 30.5410 1.04205 0.521023 0.853543i \(-0.325551\pi\)
0.521023 + 0.853543i \(0.325551\pi\)
\(860\) 0 0
\(861\) −26.0344 −0.887251
\(862\) 0 0
\(863\) 35.7771 1.21787 0.608933 0.793222i \(-0.291598\pi\)
0.608933 + 0.793222i \(0.291598\pi\)
\(864\) 0 0
\(865\) 20.3607 0.692284
\(866\) 0 0
\(867\) −5.78522 −0.196476
\(868\) 0 0
\(869\) 39.7082 1.34701
\(870\) 0 0
\(871\) −36.7082 −1.24381
\(872\) 0 0
\(873\) 1.76393 0.0597001
\(874\) 0 0
\(875\) −44.3607 −1.49966
\(876\) 0 0
\(877\) 20.0689 0.677678 0.338839 0.940844i \(-0.389966\pi\)
0.338839 + 0.940844i \(0.389966\pi\)
\(878\) 0 0
\(879\) 3.00000 0.101187
\(880\) 0 0
\(881\) −4.25735 −0.143434 −0.0717170 0.997425i \(-0.522848\pi\)
−0.0717170 + 0.997425i \(0.522848\pi\)
\(882\) 0 0
\(883\) −19.2016 −0.646186 −0.323093 0.946367i \(-0.604723\pi\)
−0.323093 + 0.946367i \(0.604723\pi\)
\(884\) 0 0
\(885\) −5.81966 −0.195626
\(886\) 0 0
\(887\) −6.29180 −0.211258 −0.105629 0.994406i \(-0.533686\pi\)
−0.105629 + 0.994406i \(0.533686\pi\)
\(888\) 0 0
\(889\) −38.1246 −1.27866
\(890\) 0 0
\(891\) −37.7771 −1.26558
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −21.0132 −0.702392
\(896\) 0 0
\(897\) 2.88854 0.0964457
\(898\) 0 0
\(899\) −25.5066 −0.850692
\(900\) 0 0
\(901\) −7.88854 −0.262805
\(902\) 0 0
\(903\) 4.23607 0.140968
\(904\) 0 0
\(905\) −14.8328 −0.493059
\(906\) 0 0
\(907\) −20.5836 −0.683467 −0.341733 0.939797i \(-0.611014\pi\)
−0.341733 + 0.939797i \(0.611014\pi\)
\(908\) 0 0
\(909\) −11.0902 −0.367838
\(910\) 0 0
\(911\) −47.3951 −1.57027 −0.785135 0.619324i \(-0.787407\pi\)
−0.785135 + 0.619324i \(0.787407\pi\)
\(912\) 0 0
\(913\) −19.4853 −0.644869
\(914\) 0 0
\(915\) −5.12461 −0.169414
\(916\) 0 0
\(917\) −32.2705 −1.06567
\(918\) 0 0
\(919\) 39.2492 1.29471 0.647356 0.762188i \(-0.275875\pi\)
0.647356 + 0.762188i \(0.275875\pi\)
\(920\) 0 0
\(921\) 4.78522 0.157678
\(922\) 0 0
\(923\) −39.2918 −1.29331
\(924\) 0 0
\(925\) 29.9230 0.983862
\(926\) 0 0
\(927\) −12.7082 −0.417392
\(928\) 0 0
\(929\) 0.506578 0.0166203 0.00831014 0.999965i \(-0.497355\pi\)
0.00831014 + 0.999965i \(0.497355\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 10.9443 0.358299
\(934\) 0 0
\(935\) −22.6099 −0.739423
\(936\) 0 0
\(937\) 25.1591 0.821910 0.410955 0.911656i \(-0.365195\pi\)
0.410955 + 0.911656i \(0.365195\pi\)
\(938\) 0 0
\(939\) 9.50658 0.310235
\(940\) 0 0
\(941\) 40.9230 1.33405 0.667026 0.745035i \(-0.267567\pi\)
0.667026 + 0.745035i \(0.267567\pi\)
\(942\) 0 0
\(943\) 8.49342 0.276584
\(944\) 0 0
\(945\) −18.1803 −0.591407
\(946\) 0 0
\(947\) 43.0132 1.39774 0.698870 0.715249i \(-0.253687\pi\)
0.698870 + 0.715249i \(0.253687\pi\)
\(948\) 0 0
\(949\) −66.9574 −2.17353
\(950\) 0 0
\(951\) −6.76393 −0.219336
\(952\) 0 0
\(953\) −27.2918 −0.884068 −0.442034 0.896998i \(-0.645743\pi\)
−0.442034 + 0.896998i \(0.645743\pi\)
\(954\) 0 0
\(955\) 4.87539 0.157764
\(956\) 0 0
\(957\) −15.7639 −0.509576
\(958\) 0 0
\(959\) 65.5410 2.11643
\(960\) 0 0
\(961\) 12.7984 0.412851
\(962\) 0 0
\(963\) −8.61803 −0.277712
\(964\) 0 0
\(965\) −7.41641 −0.238743
\(966\) 0 0
\(967\) 22.6525 0.728455 0.364227 0.931310i \(-0.381333\pi\)
0.364227 + 0.931310i \(0.381333\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 32.4377 1.04098 0.520488 0.853869i \(-0.325750\pi\)
0.520488 + 0.853869i \(0.325750\pi\)
\(972\) 0 0
\(973\) −45.9787 −1.47401
\(974\) 0 0
\(975\) 11.7426 0.376066
\(976\) 0 0
\(977\) 9.58359 0.306606 0.153303 0.988179i \(-0.451009\pi\)
0.153303 + 0.988179i \(0.451009\pi\)
\(978\) 0 0
\(979\) −44.3951 −1.41887
\(980\) 0 0
\(981\) 11.0902 0.354082
\(982\) 0 0
\(983\) −5.32624 −0.169881 −0.0849403 0.996386i \(-0.527070\pi\)
−0.0849403 + 0.996386i \(0.527070\pi\)
\(984\) 0 0
\(985\) −14.1803 −0.451823
\(986\) 0 0
\(987\) −1.85410 −0.0590167
\(988\) 0 0
\(989\) −1.38197 −0.0439440
\(990\) 0 0
\(991\) 20.2016 0.641726 0.320863 0.947126i \(-0.396027\pi\)
0.320863 + 0.947126i \(0.396027\pi\)
\(992\) 0 0
\(993\) −4.65248 −0.147642
\(994\) 0 0
\(995\) −23.4164 −0.742350
\(996\) 0 0
\(997\) −10.2918 −0.325944 −0.162972 0.986631i \(-0.552108\pi\)
−0.162972 + 0.986631i \(0.552108\pi\)
\(998\) 0 0
\(999\) 29.9230 0.946721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.i.1.2 2
4.3 odd 2 5776.2.a.bd.1.1 2
19.18 odd 2 2888.2.a.k.1.1 yes 2
76.75 even 2 5776.2.a.x.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2888.2.a.i.1.2 2 1.1 even 1 trivial
2888.2.a.k.1.1 yes 2 19.18 odd 2
5776.2.a.x.1.2 2 76.75 even 2
5776.2.a.bd.1.1 2 4.3 odd 2