Properties

Label 2888.2.a.i.1.1
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1,0,-2,0,4,0,-3,0,-11,0,-2,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.61803 q^{3} -3.23607 q^{5} -0.236068 q^{7} -0.381966 q^{9} -4.38197 q^{11} +3.47214 q^{13} +5.23607 q^{15} +7.23607 q^{17} +0.381966 q^{21} +5.85410 q^{23} +5.47214 q^{25} +5.47214 q^{27} -2.85410 q^{29} -4.38197 q^{31} +7.09017 q^{33} +0.763932 q^{35} -6.38197 q^{37} -5.61803 q^{39} +7.94427 q^{41} -0.618034 q^{43} +1.23607 q^{45} +12.7082 q^{47} -6.94427 q^{49} -11.7082 q^{51} +3.85410 q^{53} +14.1803 q^{55} -5.38197 q^{59} +6.70820 q^{61} +0.0901699 q^{63} -11.2361 q^{65} -6.70820 q^{67} -9.47214 q^{69} -15.1803 q^{71} +7.76393 q^{73} -8.85410 q^{75} +1.03444 q^{77} -6.00000 q^{79} -7.70820 q^{81} -14.9443 q^{83} -23.4164 q^{85} +4.61803 q^{87} -6.70820 q^{89} -0.819660 q^{91} +7.09017 q^{93} -16.3262 q^{97} +1.67376 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 2 q^{5} + 4 q^{7} - 3 q^{9} - 11 q^{11} - 2 q^{13} + 6 q^{15} + 10 q^{17} + 3 q^{21} + 5 q^{23} + 2 q^{25} + 2 q^{27} + q^{29} - 11 q^{31} + 3 q^{33} + 6 q^{35} - 15 q^{37} - 9 q^{39} - 2 q^{41}+ \cdots + 19 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.61803 −0.934172 −0.467086 0.884212i \(-0.654696\pi\)
−0.467086 + 0.884212i \(0.654696\pi\)
\(4\) 0 0
\(5\) −3.23607 −1.44721 −0.723607 0.690212i \(-0.757517\pi\)
−0.723607 + 0.690212i \(0.757517\pi\)
\(6\) 0 0
\(7\) −0.236068 −0.0892253 −0.0446127 0.999004i \(-0.514205\pi\)
−0.0446127 + 0.999004i \(0.514205\pi\)
\(8\) 0 0
\(9\) −0.381966 −0.127322
\(10\) 0 0
\(11\) −4.38197 −1.32121 −0.660606 0.750733i \(-0.729701\pi\)
−0.660606 + 0.750733i \(0.729701\pi\)
\(12\) 0 0
\(13\) 3.47214 0.962997 0.481499 0.876447i \(-0.340093\pi\)
0.481499 + 0.876447i \(0.340093\pi\)
\(14\) 0 0
\(15\) 5.23607 1.35195
\(16\) 0 0
\(17\) 7.23607 1.75500 0.877502 0.479573i \(-0.159208\pi\)
0.877502 + 0.479573i \(0.159208\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 0.381966 0.0833518
\(22\) 0 0
\(23\) 5.85410 1.22066 0.610332 0.792145i \(-0.291036\pi\)
0.610332 + 0.792145i \(0.291036\pi\)
\(24\) 0 0
\(25\) 5.47214 1.09443
\(26\) 0 0
\(27\) 5.47214 1.05311
\(28\) 0 0
\(29\) −2.85410 −0.529993 −0.264997 0.964249i \(-0.585371\pi\)
−0.264997 + 0.964249i \(0.585371\pi\)
\(30\) 0 0
\(31\) −4.38197 −0.787024 −0.393512 0.919319i \(-0.628740\pi\)
−0.393512 + 0.919319i \(0.628740\pi\)
\(32\) 0 0
\(33\) 7.09017 1.23424
\(34\) 0 0
\(35\) 0.763932 0.129128
\(36\) 0 0
\(37\) −6.38197 −1.04919 −0.524594 0.851352i \(-0.675783\pi\)
−0.524594 + 0.851352i \(0.675783\pi\)
\(38\) 0 0
\(39\) −5.61803 −0.899605
\(40\) 0 0
\(41\) 7.94427 1.24069 0.620343 0.784330i \(-0.286993\pi\)
0.620343 + 0.784330i \(0.286993\pi\)
\(42\) 0 0
\(43\) −0.618034 −0.0942493 −0.0471246 0.998889i \(-0.515006\pi\)
−0.0471246 + 0.998889i \(0.515006\pi\)
\(44\) 0 0
\(45\) 1.23607 0.184262
\(46\) 0 0
\(47\) 12.7082 1.85368 0.926841 0.375454i \(-0.122513\pi\)
0.926841 + 0.375454i \(0.122513\pi\)
\(48\) 0 0
\(49\) −6.94427 −0.992039
\(50\) 0 0
\(51\) −11.7082 −1.63948
\(52\) 0 0
\(53\) 3.85410 0.529402 0.264701 0.964331i \(-0.414727\pi\)
0.264701 + 0.964331i \(0.414727\pi\)
\(54\) 0 0
\(55\) 14.1803 1.91208
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.38197 −0.700672 −0.350336 0.936624i \(-0.613933\pi\)
−0.350336 + 0.936624i \(0.613933\pi\)
\(60\) 0 0
\(61\) 6.70820 0.858898 0.429449 0.903091i \(-0.358708\pi\)
0.429449 + 0.903091i \(0.358708\pi\)
\(62\) 0 0
\(63\) 0.0901699 0.0113603
\(64\) 0 0
\(65\) −11.2361 −1.39366
\(66\) 0 0
\(67\) −6.70820 −0.819538 −0.409769 0.912189i \(-0.634391\pi\)
−0.409769 + 0.912189i \(0.634391\pi\)
\(68\) 0 0
\(69\) −9.47214 −1.14031
\(70\) 0 0
\(71\) −15.1803 −1.80157 −0.900787 0.434260i \(-0.857010\pi\)
−0.900787 + 0.434260i \(0.857010\pi\)
\(72\) 0 0
\(73\) 7.76393 0.908700 0.454350 0.890823i \(-0.349872\pi\)
0.454350 + 0.890823i \(0.349872\pi\)
\(74\) 0 0
\(75\) −8.85410 −1.02238
\(76\) 0 0
\(77\) 1.03444 0.117886
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) −7.70820 −0.856467
\(82\) 0 0
\(83\) −14.9443 −1.64035 −0.820173 0.572115i \(-0.806123\pi\)
−0.820173 + 0.572115i \(0.806123\pi\)
\(84\) 0 0
\(85\) −23.4164 −2.53987
\(86\) 0 0
\(87\) 4.61803 0.495105
\(88\) 0 0
\(89\) −6.70820 −0.711068 −0.355534 0.934663i \(-0.615701\pi\)
−0.355534 + 0.934663i \(0.615701\pi\)
\(90\) 0 0
\(91\) −0.819660 −0.0859237
\(92\) 0 0
\(93\) 7.09017 0.735216
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −16.3262 −1.65768 −0.828839 0.559487i \(-0.810998\pi\)
−0.828839 + 0.559487i \(0.810998\pi\)
\(98\) 0 0
\(99\) 1.67376 0.168219
\(100\) 0 0
\(101\) −0.236068 −0.0234896 −0.0117448 0.999931i \(-0.503739\pi\)
−0.0117448 + 0.999931i \(0.503739\pi\)
\(102\) 0 0
\(103\) −1.85410 −0.182690 −0.0913450 0.995819i \(-0.529117\pi\)
−0.0913450 + 0.995819i \(0.529117\pi\)
\(104\) 0 0
\(105\) −1.23607 −0.120628
\(106\) 0 0
\(107\) 16.7082 1.61524 0.807622 0.589701i \(-0.200754\pi\)
0.807622 + 0.589701i \(0.200754\pi\)
\(108\) 0 0
\(109\) 0.236068 0.0226112 0.0113056 0.999936i \(-0.496401\pi\)
0.0113056 + 0.999936i \(0.496401\pi\)
\(110\) 0 0
\(111\) 10.3262 0.980123
\(112\) 0 0
\(113\) 19.7082 1.85399 0.926996 0.375071i \(-0.122382\pi\)
0.926996 + 0.375071i \(0.122382\pi\)
\(114\) 0 0
\(115\) −18.9443 −1.76656
\(116\) 0 0
\(117\) −1.32624 −0.122611
\(118\) 0 0
\(119\) −1.70820 −0.156591
\(120\) 0 0
\(121\) 8.20163 0.745602
\(122\) 0 0
\(123\) −12.8541 −1.15902
\(124\) 0 0
\(125\) −1.52786 −0.136656
\(126\) 0 0
\(127\) −9.00000 −0.798621 −0.399310 0.916816i \(-0.630750\pi\)
−0.399310 + 0.916816i \(0.630750\pi\)
\(128\) 0 0
\(129\) 1.00000 0.0880451
\(130\) 0 0
\(131\) −5.38197 −0.470225 −0.235112 0.971968i \(-0.575546\pi\)
−0.235112 + 0.971968i \(0.575546\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −17.7082 −1.52408
\(136\) 0 0
\(137\) 6.52786 0.557713 0.278857 0.960333i \(-0.410045\pi\)
0.278857 + 0.960333i \(0.410045\pi\)
\(138\) 0 0
\(139\) −4.14590 −0.351650 −0.175825 0.984421i \(-0.556259\pi\)
−0.175825 + 0.984421i \(0.556259\pi\)
\(140\) 0 0
\(141\) −20.5623 −1.73166
\(142\) 0 0
\(143\) −15.2148 −1.27232
\(144\) 0 0
\(145\) 9.23607 0.767014
\(146\) 0 0
\(147\) 11.2361 0.926735
\(148\) 0 0
\(149\) 15.6180 1.27948 0.639740 0.768592i \(-0.279042\pi\)
0.639740 + 0.768592i \(0.279042\pi\)
\(150\) 0 0
\(151\) −8.90983 −0.725072 −0.362536 0.931970i \(-0.618089\pi\)
−0.362536 + 0.931970i \(0.618089\pi\)
\(152\) 0 0
\(153\) −2.76393 −0.223451
\(154\) 0 0
\(155\) 14.1803 1.13899
\(156\) 0 0
\(157\) −10.7984 −0.861804 −0.430902 0.902399i \(-0.641805\pi\)
−0.430902 + 0.902399i \(0.641805\pi\)
\(158\) 0 0
\(159\) −6.23607 −0.494552
\(160\) 0 0
\(161\) −1.38197 −0.108914
\(162\) 0 0
\(163\) 12.4164 0.972528 0.486264 0.873812i \(-0.338359\pi\)
0.486264 + 0.873812i \(0.338359\pi\)
\(164\) 0 0
\(165\) −22.9443 −1.78621
\(166\) 0 0
\(167\) 21.4721 1.66156 0.830782 0.556598i \(-0.187894\pi\)
0.830782 + 0.556598i \(0.187894\pi\)
\(168\) 0 0
\(169\) −0.944272 −0.0726363
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.52786 0.572333 0.286166 0.958180i \(-0.407619\pi\)
0.286166 + 0.958180i \(0.407619\pi\)
\(174\) 0 0
\(175\) −1.29180 −0.0976506
\(176\) 0 0
\(177\) 8.70820 0.654549
\(178\) 0 0
\(179\) −17.0000 −1.27064 −0.635320 0.772249i \(-0.719132\pi\)
−0.635320 + 0.772249i \(0.719132\pi\)
\(180\) 0 0
\(181\) −12.0000 −0.891953 −0.445976 0.895045i \(-0.647144\pi\)
−0.445976 + 0.895045i \(0.647144\pi\)
\(182\) 0 0
\(183\) −10.8541 −0.802358
\(184\) 0 0
\(185\) 20.6525 1.51840
\(186\) 0 0
\(187\) −31.7082 −2.31873
\(188\) 0 0
\(189\) −1.29180 −0.0939643
\(190\) 0 0
\(191\) −13.9443 −1.00897 −0.504486 0.863420i \(-0.668318\pi\)
−0.504486 + 0.863420i \(0.668318\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) 0 0
\(195\) 18.1803 1.30192
\(196\) 0 0
\(197\) −2.52786 −0.180103 −0.0900514 0.995937i \(-0.528703\pi\)
−0.0900514 + 0.995937i \(0.528703\pi\)
\(198\) 0 0
\(199\) −1.05573 −0.0748386 −0.0374193 0.999300i \(-0.511914\pi\)
−0.0374193 + 0.999300i \(0.511914\pi\)
\(200\) 0 0
\(201\) 10.8541 0.765589
\(202\) 0 0
\(203\) 0.673762 0.0472888
\(204\) 0 0
\(205\) −25.7082 −1.79554
\(206\) 0 0
\(207\) −2.23607 −0.155417
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −7.09017 −0.488107 −0.244054 0.969762i \(-0.578477\pi\)
−0.244054 + 0.969762i \(0.578477\pi\)
\(212\) 0 0
\(213\) 24.5623 1.68298
\(214\) 0 0
\(215\) 2.00000 0.136399
\(216\) 0 0
\(217\) 1.03444 0.0702225
\(218\) 0 0
\(219\) −12.5623 −0.848882
\(220\) 0 0
\(221\) 25.1246 1.69006
\(222\) 0 0
\(223\) −7.00000 −0.468755 −0.234377 0.972146i \(-0.575305\pi\)
−0.234377 + 0.972146i \(0.575305\pi\)
\(224\) 0 0
\(225\) −2.09017 −0.139345
\(226\) 0 0
\(227\) −3.29180 −0.218484 −0.109242 0.994015i \(-0.534842\pi\)
−0.109242 + 0.994015i \(0.534842\pi\)
\(228\) 0 0
\(229\) 25.7984 1.70480 0.852402 0.522887i \(-0.175145\pi\)
0.852402 + 0.522887i \(0.175145\pi\)
\(230\) 0 0
\(231\) −1.67376 −0.110125
\(232\) 0 0
\(233\) 12.5279 0.820728 0.410364 0.911922i \(-0.365402\pi\)
0.410364 + 0.911922i \(0.365402\pi\)
\(234\) 0 0
\(235\) −41.1246 −2.68267
\(236\) 0 0
\(237\) 9.70820 0.630616
\(238\) 0 0
\(239\) −27.2705 −1.76398 −0.881991 0.471266i \(-0.843797\pi\)
−0.881991 + 0.471266i \(0.843797\pi\)
\(240\) 0 0
\(241\) −15.7639 −1.01544 −0.507722 0.861521i \(-0.669512\pi\)
−0.507722 + 0.861521i \(0.669512\pi\)
\(242\) 0 0
\(243\) −3.94427 −0.253025
\(244\) 0 0
\(245\) 22.4721 1.43569
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 24.1803 1.53237
\(250\) 0 0
\(251\) −20.2361 −1.27729 −0.638645 0.769502i \(-0.720505\pi\)
−0.638645 + 0.769502i \(0.720505\pi\)
\(252\) 0 0
\(253\) −25.6525 −1.61276
\(254\) 0 0
\(255\) 37.8885 2.37267
\(256\) 0 0
\(257\) 7.41641 0.462623 0.231311 0.972880i \(-0.425698\pi\)
0.231311 + 0.972880i \(0.425698\pi\)
\(258\) 0 0
\(259\) 1.50658 0.0936142
\(260\) 0 0
\(261\) 1.09017 0.0674798
\(262\) 0 0
\(263\) −4.47214 −0.275764 −0.137882 0.990449i \(-0.544029\pi\)
−0.137882 + 0.990449i \(0.544029\pi\)
\(264\) 0 0
\(265\) −12.4721 −0.766157
\(266\) 0 0
\(267\) 10.8541 0.664260
\(268\) 0 0
\(269\) −14.3262 −0.873486 −0.436743 0.899586i \(-0.643868\pi\)
−0.436743 + 0.899586i \(0.643868\pi\)
\(270\) 0 0
\(271\) −21.6180 −1.31320 −0.656601 0.754238i \(-0.728006\pi\)
−0.656601 + 0.754238i \(0.728006\pi\)
\(272\) 0 0
\(273\) 1.32624 0.0802676
\(274\) 0 0
\(275\) −23.9787 −1.44597
\(276\) 0 0
\(277\) −19.4164 −1.16662 −0.583309 0.812250i \(-0.698242\pi\)
−0.583309 + 0.812250i \(0.698242\pi\)
\(278\) 0 0
\(279\) 1.67376 0.100206
\(280\) 0 0
\(281\) −1.90983 −0.113931 −0.0569655 0.998376i \(-0.518142\pi\)
−0.0569655 + 0.998376i \(0.518142\pi\)
\(282\) 0 0
\(283\) 5.56231 0.330645 0.165322 0.986240i \(-0.447134\pi\)
0.165322 + 0.986240i \(0.447134\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.87539 −0.110701
\(288\) 0 0
\(289\) 35.3607 2.08004
\(290\) 0 0
\(291\) 26.4164 1.54856
\(292\) 0 0
\(293\) −1.85410 −0.108318 −0.0541589 0.998532i \(-0.517248\pi\)
−0.0541589 + 0.998532i \(0.517248\pi\)
\(294\) 0 0
\(295\) 17.4164 1.01402
\(296\) 0 0
\(297\) −23.9787 −1.39139
\(298\) 0 0
\(299\) 20.3262 1.17550
\(300\) 0 0
\(301\) 0.145898 0.00840942
\(302\) 0 0
\(303\) 0.381966 0.0219434
\(304\) 0 0
\(305\) −21.7082 −1.24301
\(306\) 0 0
\(307\) −34.7426 −1.98287 −0.991434 0.130610i \(-0.958306\pi\)
−0.991434 + 0.130610i \(0.958306\pi\)
\(308\) 0 0
\(309\) 3.00000 0.170664
\(310\) 0 0
\(311\) 4.29180 0.243365 0.121683 0.992569i \(-0.461171\pi\)
0.121683 + 0.992569i \(0.461171\pi\)
\(312\) 0 0
\(313\) 17.6180 0.995830 0.497915 0.867226i \(-0.334099\pi\)
0.497915 + 0.867226i \(0.334099\pi\)
\(314\) 0 0
\(315\) −0.291796 −0.0164408
\(316\) 0 0
\(317\) 6.94427 0.390029 0.195015 0.980800i \(-0.437525\pi\)
0.195015 + 0.980800i \(0.437525\pi\)
\(318\) 0 0
\(319\) 12.5066 0.700234
\(320\) 0 0
\(321\) −27.0344 −1.50892
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 19.0000 1.05393
\(326\) 0 0
\(327\) −0.381966 −0.0211228
\(328\) 0 0
\(329\) −3.00000 −0.165395
\(330\) 0 0
\(331\) −16.4721 −0.905390 −0.452695 0.891665i \(-0.649537\pi\)
−0.452695 + 0.891665i \(0.649537\pi\)
\(332\) 0 0
\(333\) 2.43769 0.133585
\(334\) 0 0
\(335\) 21.7082 1.18605
\(336\) 0 0
\(337\) 3.81966 0.208070 0.104035 0.994574i \(-0.466825\pi\)
0.104035 + 0.994574i \(0.466825\pi\)
\(338\) 0 0
\(339\) −31.8885 −1.73195
\(340\) 0 0
\(341\) 19.2016 1.03983
\(342\) 0 0
\(343\) 3.29180 0.177740
\(344\) 0 0
\(345\) 30.6525 1.65027
\(346\) 0 0
\(347\) −6.94427 −0.372788 −0.186394 0.982475i \(-0.559680\pi\)
−0.186394 + 0.982475i \(0.559680\pi\)
\(348\) 0 0
\(349\) 21.8541 1.16982 0.584912 0.811097i \(-0.301129\pi\)
0.584912 + 0.811097i \(0.301129\pi\)
\(350\) 0 0
\(351\) 19.0000 1.01414
\(352\) 0 0
\(353\) −32.2705 −1.71759 −0.858793 0.512323i \(-0.828785\pi\)
−0.858793 + 0.512323i \(0.828785\pi\)
\(354\) 0 0
\(355\) 49.1246 2.60726
\(356\) 0 0
\(357\) 2.76393 0.146283
\(358\) 0 0
\(359\) −6.20163 −0.327309 −0.163655 0.986518i \(-0.552328\pi\)
−0.163655 + 0.986518i \(0.552328\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −13.2705 −0.696521
\(364\) 0 0
\(365\) −25.1246 −1.31508
\(366\) 0 0
\(367\) −0.708204 −0.0369679 −0.0184840 0.999829i \(-0.505884\pi\)
−0.0184840 + 0.999829i \(0.505884\pi\)
\(368\) 0 0
\(369\) −3.03444 −0.157967
\(370\) 0 0
\(371\) −0.909830 −0.0472360
\(372\) 0 0
\(373\) −6.88854 −0.356675 −0.178338 0.983969i \(-0.557072\pi\)
−0.178338 + 0.983969i \(0.557072\pi\)
\(374\) 0 0
\(375\) 2.47214 0.127661
\(376\) 0 0
\(377\) −9.90983 −0.510382
\(378\) 0 0
\(379\) −3.12461 −0.160501 −0.0802503 0.996775i \(-0.525572\pi\)
−0.0802503 + 0.996775i \(0.525572\pi\)
\(380\) 0 0
\(381\) 14.5623 0.746050
\(382\) 0 0
\(383\) 6.96556 0.355923 0.177962 0.984037i \(-0.443050\pi\)
0.177962 + 0.984037i \(0.443050\pi\)
\(384\) 0 0
\(385\) −3.34752 −0.170606
\(386\) 0 0
\(387\) 0.236068 0.0120000
\(388\) 0 0
\(389\) 16.3262 0.827773 0.413887 0.910328i \(-0.364171\pi\)
0.413887 + 0.910328i \(0.364171\pi\)
\(390\) 0 0
\(391\) 42.3607 2.14227
\(392\) 0 0
\(393\) 8.70820 0.439271
\(394\) 0 0
\(395\) 19.4164 0.976946
\(396\) 0 0
\(397\) 11.9443 0.599466 0.299733 0.954023i \(-0.403102\pi\)
0.299733 + 0.954023i \(0.403102\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11.8885 −0.593686 −0.296843 0.954926i \(-0.595934\pi\)
−0.296843 + 0.954926i \(0.595934\pi\)
\(402\) 0 0
\(403\) −15.2148 −0.757902
\(404\) 0 0
\(405\) 24.9443 1.23949
\(406\) 0 0
\(407\) 27.9656 1.38620
\(408\) 0 0
\(409\) −0.291796 −0.0144284 −0.00721419 0.999974i \(-0.502296\pi\)
−0.00721419 + 0.999974i \(0.502296\pi\)
\(410\) 0 0
\(411\) −10.5623 −0.521000
\(412\) 0 0
\(413\) 1.27051 0.0625177
\(414\) 0 0
\(415\) 48.3607 2.37393
\(416\) 0 0
\(417\) 6.70820 0.328502
\(418\) 0 0
\(419\) −0.944272 −0.0461307 −0.0230654 0.999734i \(-0.507343\pi\)
−0.0230654 + 0.999734i \(0.507343\pi\)
\(420\) 0 0
\(421\) −6.05573 −0.295138 −0.147569 0.989052i \(-0.547145\pi\)
−0.147569 + 0.989052i \(0.547145\pi\)
\(422\) 0 0
\(423\) −4.85410 −0.236015
\(424\) 0 0
\(425\) 39.5967 1.92072
\(426\) 0 0
\(427\) −1.58359 −0.0766354
\(428\) 0 0
\(429\) 24.6180 1.18857
\(430\) 0 0
\(431\) 12.8885 0.620819 0.310410 0.950603i \(-0.399534\pi\)
0.310410 + 0.950603i \(0.399534\pi\)
\(432\) 0 0
\(433\) −19.9787 −0.960116 −0.480058 0.877237i \(-0.659384\pi\)
−0.480058 + 0.877237i \(0.659384\pi\)
\(434\) 0 0
\(435\) −14.9443 −0.716523
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 32.3050 1.54183 0.770916 0.636937i \(-0.219799\pi\)
0.770916 + 0.636937i \(0.219799\pi\)
\(440\) 0 0
\(441\) 2.65248 0.126308
\(442\) 0 0
\(443\) −14.8197 −0.704103 −0.352052 0.935981i \(-0.614516\pi\)
−0.352052 + 0.935981i \(0.614516\pi\)
\(444\) 0 0
\(445\) 21.7082 1.02907
\(446\) 0 0
\(447\) −25.2705 −1.19525
\(448\) 0 0
\(449\) −26.8885 −1.26895 −0.634474 0.772944i \(-0.718783\pi\)
−0.634474 + 0.772944i \(0.718783\pi\)
\(450\) 0 0
\(451\) −34.8115 −1.63921
\(452\) 0 0
\(453\) 14.4164 0.677342
\(454\) 0 0
\(455\) 2.65248 0.124350
\(456\) 0 0
\(457\) 11.1246 0.520387 0.260194 0.965556i \(-0.416214\pi\)
0.260194 + 0.965556i \(0.416214\pi\)
\(458\) 0 0
\(459\) 39.5967 1.84822
\(460\) 0 0
\(461\) 22.8328 1.06343 0.531715 0.846923i \(-0.321548\pi\)
0.531715 + 0.846923i \(0.321548\pi\)
\(462\) 0 0
\(463\) 29.5066 1.37129 0.685643 0.727938i \(-0.259521\pi\)
0.685643 + 0.727938i \(0.259521\pi\)
\(464\) 0 0
\(465\) −22.9443 −1.06402
\(466\) 0 0
\(467\) 9.76393 0.451821 0.225910 0.974148i \(-0.427464\pi\)
0.225910 + 0.974148i \(0.427464\pi\)
\(468\) 0 0
\(469\) 1.58359 0.0731235
\(470\) 0 0
\(471\) 17.4721 0.805074
\(472\) 0 0
\(473\) 2.70820 0.124523
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.47214 −0.0674045
\(478\) 0 0
\(479\) −9.38197 −0.428673 −0.214336 0.976760i \(-0.568759\pi\)
−0.214336 + 0.976760i \(0.568759\pi\)
\(480\) 0 0
\(481\) −22.1591 −1.01037
\(482\) 0 0
\(483\) 2.23607 0.101745
\(484\) 0 0
\(485\) 52.8328 2.39901
\(486\) 0 0
\(487\) 4.76393 0.215874 0.107937 0.994158i \(-0.465575\pi\)
0.107937 + 0.994158i \(0.465575\pi\)
\(488\) 0 0
\(489\) −20.0902 −0.908509
\(490\) 0 0
\(491\) 14.2705 0.644019 0.322010 0.946736i \(-0.395642\pi\)
0.322010 + 0.946736i \(0.395642\pi\)
\(492\) 0 0
\(493\) −20.6525 −0.930141
\(494\) 0 0
\(495\) −5.41641 −0.243449
\(496\) 0 0
\(497\) 3.58359 0.160746
\(498\) 0 0
\(499\) −7.81966 −0.350056 −0.175028 0.984563i \(-0.556002\pi\)
−0.175028 + 0.984563i \(0.556002\pi\)
\(500\) 0 0
\(501\) −34.7426 −1.55219
\(502\) 0 0
\(503\) 24.2361 1.08063 0.540316 0.841462i \(-0.318305\pi\)
0.540316 + 0.841462i \(0.318305\pi\)
\(504\) 0 0
\(505\) 0.763932 0.0339945
\(506\) 0 0
\(507\) 1.52786 0.0678548
\(508\) 0 0
\(509\) −40.8673 −1.81141 −0.905705 0.423909i \(-0.860658\pi\)
−0.905705 + 0.423909i \(0.860658\pi\)
\(510\) 0 0
\(511\) −1.83282 −0.0810790
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.00000 0.264392
\(516\) 0 0
\(517\) −55.6869 −2.44911
\(518\) 0 0
\(519\) −12.1803 −0.534658
\(520\) 0 0
\(521\) −14.8541 −0.650770 −0.325385 0.945582i \(-0.605494\pi\)
−0.325385 + 0.945582i \(0.605494\pi\)
\(522\) 0 0
\(523\) 23.0689 1.00873 0.504366 0.863490i \(-0.331726\pi\)
0.504366 + 0.863490i \(0.331726\pi\)
\(524\) 0 0
\(525\) 2.09017 0.0912225
\(526\) 0 0
\(527\) −31.7082 −1.38123
\(528\) 0 0
\(529\) 11.2705 0.490022
\(530\) 0 0
\(531\) 2.05573 0.0892110
\(532\) 0 0
\(533\) 27.5836 1.19478
\(534\) 0 0
\(535\) −54.0689 −2.33760
\(536\) 0 0
\(537\) 27.5066 1.18700
\(538\) 0 0
\(539\) 30.4296 1.31069
\(540\) 0 0
\(541\) −7.58359 −0.326044 −0.163022 0.986622i \(-0.552124\pi\)
−0.163022 + 0.986622i \(0.552124\pi\)
\(542\) 0 0
\(543\) 19.4164 0.833238
\(544\) 0 0
\(545\) −0.763932 −0.0327233
\(546\) 0 0
\(547\) −12.5623 −0.537125 −0.268563 0.963262i \(-0.586549\pi\)
−0.268563 + 0.963262i \(0.586549\pi\)
\(548\) 0 0
\(549\) −2.56231 −0.109357
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 1.41641 0.0602318
\(554\) 0 0
\(555\) −33.4164 −1.41845
\(556\) 0 0
\(557\) −0.819660 −0.0347301 −0.0173651 0.999849i \(-0.505528\pi\)
−0.0173651 + 0.999849i \(0.505528\pi\)
\(558\) 0 0
\(559\) −2.14590 −0.0907618
\(560\) 0 0
\(561\) 51.3050 2.16610
\(562\) 0 0
\(563\) −37.4164 −1.57691 −0.788457 0.615090i \(-0.789120\pi\)
−0.788457 + 0.615090i \(0.789120\pi\)
\(564\) 0 0
\(565\) −63.7771 −2.68312
\(566\) 0 0
\(567\) 1.81966 0.0764185
\(568\) 0 0
\(569\) 9.56231 0.400873 0.200436 0.979707i \(-0.435764\pi\)
0.200436 + 0.979707i \(0.435764\pi\)
\(570\) 0 0
\(571\) 7.32624 0.306594 0.153297 0.988180i \(-0.451011\pi\)
0.153297 + 0.988180i \(0.451011\pi\)
\(572\) 0 0
\(573\) 22.5623 0.942554
\(574\) 0 0
\(575\) 32.0344 1.33593
\(576\) 0 0
\(577\) −19.7639 −0.822783 −0.411392 0.911459i \(-0.634957\pi\)
−0.411392 + 0.911459i \(0.634957\pi\)
\(578\) 0 0
\(579\) 9.70820 0.403459
\(580\) 0 0
\(581\) 3.52786 0.146360
\(582\) 0 0
\(583\) −16.8885 −0.699452
\(584\) 0 0
\(585\) 4.29180 0.177444
\(586\) 0 0
\(587\) −35.8328 −1.47898 −0.739489 0.673168i \(-0.764933\pi\)
−0.739489 + 0.673168i \(0.764933\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 4.09017 0.168247
\(592\) 0 0
\(593\) −14.7082 −0.603994 −0.301997 0.953309i \(-0.597653\pi\)
−0.301997 + 0.953309i \(0.597653\pi\)
\(594\) 0 0
\(595\) 5.52786 0.226620
\(596\) 0 0
\(597\) 1.70820 0.0699121
\(598\) 0 0
\(599\) 12.1246 0.495398 0.247699 0.968837i \(-0.420326\pi\)
0.247699 + 0.968837i \(0.420326\pi\)
\(600\) 0 0
\(601\) −1.81966 −0.0742255 −0.0371127 0.999311i \(-0.511816\pi\)
−0.0371127 + 0.999311i \(0.511816\pi\)
\(602\) 0 0
\(603\) 2.56231 0.104345
\(604\) 0 0
\(605\) −26.5410 −1.07905
\(606\) 0 0
\(607\) 33.6180 1.36451 0.682257 0.731112i \(-0.260999\pi\)
0.682257 + 0.731112i \(0.260999\pi\)
\(608\) 0 0
\(609\) −1.09017 −0.0441759
\(610\) 0 0
\(611\) 44.1246 1.78509
\(612\) 0 0
\(613\) −32.3050 −1.30478 −0.652392 0.757881i \(-0.726235\pi\)
−0.652392 + 0.757881i \(0.726235\pi\)
\(614\) 0 0
\(615\) 41.5967 1.67734
\(616\) 0 0
\(617\) 25.5623 1.02910 0.514550 0.857460i \(-0.327959\pi\)
0.514550 + 0.857460i \(0.327959\pi\)
\(618\) 0 0
\(619\) −15.0000 −0.602901 −0.301450 0.953482i \(-0.597471\pi\)
−0.301450 + 0.953482i \(0.597471\pi\)
\(620\) 0 0
\(621\) 32.0344 1.28550
\(622\) 0 0
\(623\) 1.58359 0.0634453
\(624\) 0 0
\(625\) −22.4164 −0.896656
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −46.1803 −1.84133
\(630\) 0 0
\(631\) 33.5410 1.33525 0.667623 0.744499i \(-0.267312\pi\)
0.667623 + 0.744499i \(0.267312\pi\)
\(632\) 0 0
\(633\) 11.4721 0.455976
\(634\) 0 0
\(635\) 29.1246 1.15577
\(636\) 0 0
\(637\) −24.1115 −0.955331
\(638\) 0 0
\(639\) 5.79837 0.229380
\(640\) 0 0
\(641\) −2.38197 −0.0940820 −0.0470410 0.998893i \(-0.514979\pi\)
−0.0470410 + 0.998893i \(0.514979\pi\)
\(642\) 0 0
\(643\) −1.81966 −0.0717604 −0.0358802 0.999356i \(-0.511423\pi\)
−0.0358802 + 0.999356i \(0.511423\pi\)
\(644\) 0 0
\(645\) −3.23607 −0.127420
\(646\) 0 0
\(647\) −25.0689 −0.985560 −0.492780 0.870154i \(-0.664019\pi\)
−0.492780 + 0.870154i \(0.664019\pi\)
\(648\) 0 0
\(649\) 23.5836 0.925737
\(650\) 0 0
\(651\) −1.67376 −0.0655999
\(652\) 0 0
\(653\) 20.7984 0.813903 0.406952 0.913450i \(-0.366592\pi\)
0.406952 + 0.913450i \(0.366592\pi\)
\(654\) 0 0
\(655\) 17.4164 0.680515
\(656\) 0 0
\(657\) −2.96556 −0.115697
\(658\) 0 0
\(659\) 26.3607 1.02687 0.513433 0.858130i \(-0.328373\pi\)
0.513433 + 0.858130i \(0.328373\pi\)
\(660\) 0 0
\(661\) −17.4164 −0.677420 −0.338710 0.940891i \(-0.609991\pi\)
−0.338710 + 0.940891i \(0.609991\pi\)
\(662\) 0 0
\(663\) −40.6525 −1.57881
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16.7082 −0.646944
\(668\) 0 0
\(669\) 11.3262 0.437898
\(670\) 0 0
\(671\) −29.3951 −1.13479
\(672\) 0 0
\(673\) −0.596748 −0.0230029 −0.0115015 0.999934i \(-0.503661\pi\)
−0.0115015 + 0.999934i \(0.503661\pi\)
\(674\) 0 0
\(675\) 29.9443 1.15256
\(676\) 0 0
\(677\) −23.5066 −0.903431 −0.451716 0.892162i \(-0.649188\pi\)
−0.451716 + 0.892162i \(0.649188\pi\)
\(678\) 0 0
\(679\) 3.85410 0.147907
\(680\) 0 0
\(681\) 5.32624 0.204102
\(682\) 0 0
\(683\) 4.05573 0.155188 0.0775941 0.996985i \(-0.475276\pi\)
0.0775941 + 0.996985i \(0.475276\pi\)
\(684\) 0 0
\(685\) −21.1246 −0.807130
\(686\) 0 0
\(687\) −41.7426 −1.59258
\(688\) 0 0
\(689\) 13.3820 0.509812
\(690\) 0 0
\(691\) −9.47214 −0.360337 −0.180169 0.983636i \(-0.557664\pi\)
−0.180169 + 0.983636i \(0.557664\pi\)
\(692\) 0 0
\(693\) −0.395122 −0.0150094
\(694\) 0 0
\(695\) 13.4164 0.508913
\(696\) 0 0
\(697\) 57.4853 2.17741
\(698\) 0 0
\(699\) −20.2705 −0.766701
\(700\) 0 0
\(701\) −24.7984 −0.936622 −0.468311 0.883564i \(-0.655137\pi\)
−0.468311 + 0.883564i \(0.655137\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 66.5410 2.50608
\(706\) 0 0
\(707\) 0.0557281 0.00209587
\(708\) 0 0
\(709\) −28.3607 −1.06511 −0.532554 0.846396i \(-0.678768\pi\)
−0.532554 + 0.846396i \(0.678768\pi\)
\(710\) 0 0
\(711\) 2.29180 0.0859491
\(712\) 0 0
\(713\) −25.6525 −0.960693
\(714\) 0 0
\(715\) 49.2361 1.84132
\(716\) 0 0
\(717\) 44.1246 1.64786
\(718\) 0 0
\(719\) −20.6738 −0.771001 −0.385501 0.922708i \(-0.625971\pi\)
−0.385501 + 0.922708i \(0.625971\pi\)
\(720\) 0 0
\(721\) 0.437694 0.0163006
\(722\) 0 0
\(723\) 25.5066 0.948600
\(724\) 0 0
\(725\) −15.6180 −0.580039
\(726\) 0 0
\(727\) 29.2361 1.08431 0.542153 0.840280i \(-0.317609\pi\)
0.542153 + 0.840280i \(0.317609\pi\)
\(728\) 0 0
\(729\) 29.5066 1.09284
\(730\) 0 0
\(731\) −4.47214 −0.165408
\(732\) 0 0
\(733\) 21.6525 0.799752 0.399876 0.916569i \(-0.369053\pi\)
0.399876 + 0.916569i \(0.369053\pi\)
\(734\) 0 0
\(735\) −36.3607 −1.34118
\(736\) 0 0
\(737\) 29.3951 1.08278
\(738\) 0 0
\(739\) 49.0689 1.80503 0.902514 0.430660i \(-0.141719\pi\)
0.902514 + 0.430660i \(0.141719\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 29.2918 1.07461 0.537306 0.843387i \(-0.319442\pi\)
0.537306 + 0.843387i \(0.319442\pi\)
\(744\) 0 0
\(745\) −50.5410 −1.85168
\(746\) 0 0
\(747\) 5.70820 0.208852
\(748\) 0 0
\(749\) −3.94427 −0.144121
\(750\) 0 0
\(751\) 11.9098 0.434596 0.217298 0.976105i \(-0.430276\pi\)
0.217298 + 0.976105i \(0.430276\pi\)
\(752\) 0 0
\(753\) 32.7426 1.19321
\(754\) 0 0
\(755\) 28.8328 1.04933
\(756\) 0 0
\(757\) −22.2016 −0.806932 −0.403466 0.914995i \(-0.632195\pi\)
−0.403466 + 0.914995i \(0.632195\pi\)
\(758\) 0 0
\(759\) 41.5066 1.50659
\(760\) 0 0
\(761\) −3.83282 −0.138939 −0.0694697 0.997584i \(-0.522131\pi\)
−0.0694697 + 0.997584i \(0.522131\pi\)
\(762\) 0 0
\(763\) −0.0557281 −0.00201749
\(764\) 0 0
\(765\) 8.94427 0.323381
\(766\) 0 0
\(767\) −18.6869 −0.674745
\(768\) 0 0
\(769\) −29.6180 −1.06805 −0.534027 0.845468i \(-0.679322\pi\)
−0.534027 + 0.845468i \(0.679322\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 0 0
\(773\) 23.5623 0.847477 0.423739 0.905785i \(-0.360718\pi\)
0.423739 + 0.905785i \(0.360718\pi\)
\(774\) 0 0
\(775\) −23.9787 −0.861341
\(776\) 0 0
\(777\) −2.43769 −0.0874518
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 66.5197 2.38026
\(782\) 0 0
\(783\) −15.6180 −0.558143
\(784\) 0 0
\(785\) 34.9443 1.24721
\(786\) 0 0
\(787\) 19.3050 0.688147 0.344074 0.938943i \(-0.388193\pi\)
0.344074 + 0.938943i \(0.388193\pi\)
\(788\) 0 0
\(789\) 7.23607 0.257611
\(790\) 0 0
\(791\) −4.65248 −0.165423
\(792\) 0 0
\(793\) 23.2918 0.827116
\(794\) 0 0
\(795\) 20.1803 0.715723
\(796\) 0 0
\(797\) −24.0689 −0.852564 −0.426282 0.904590i \(-0.640177\pi\)
−0.426282 + 0.904590i \(0.640177\pi\)
\(798\) 0 0
\(799\) 91.9574 3.25322
\(800\) 0 0
\(801\) 2.56231 0.0905346
\(802\) 0 0
\(803\) −34.0213 −1.20059
\(804\) 0 0
\(805\) 4.47214 0.157622
\(806\) 0 0
\(807\) 23.1803 0.815987
\(808\) 0 0
\(809\) 36.5066 1.28350 0.641751 0.766913i \(-0.278208\pi\)
0.641751 + 0.766913i \(0.278208\pi\)
\(810\) 0 0
\(811\) 43.7426 1.53601 0.768006 0.640443i \(-0.221249\pi\)
0.768006 + 0.640443i \(0.221249\pi\)
\(812\) 0 0
\(813\) 34.9787 1.22676
\(814\) 0 0
\(815\) −40.1803 −1.40746
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0.313082 0.0109400
\(820\) 0 0
\(821\) 42.7426 1.49173 0.745864 0.666098i \(-0.232037\pi\)
0.745864 + 0.666098i \(0.232037\pi\)
\(822\) 0 0
\(823\) 14.7639 0.514638 0.257319 0.966326i \(-0.417161\pi\)
0.257319 + 0.966326i \(0.417161\pi\)
\(824\) 0 0
\(825\) 38.7984 1.35079
\(826\) 0 0
\(827\) −9.58359 −0.333254 −0.166627 0.986020i \(-0.553288\pi\)
−0.166627 + 0.986020i \(0.553288\pi\)
\(828\) 0 0
\(829\) 13.4377 0.466710 0.233355 0.972392i \(-0.425030\pi\)
0.233355 + 0.972392i \(0.425030\pi\)
\(830\) 0 0
\(831\) 31.4164 1.08982
\(832\) 0 0
\(833\) −50.2492 −1.74103
\(834\) 0 0
\(835\) −69.4853 −2.40464
\(836\) 0 0
\(837\) −23.9787 −0.828826
\(838\) 0 0
\(839\) −49.9230 −1.72353 −0.861766 0.507305i \(-0.830642\pi\)
−0.861766 + 0.507305i \(0.830642\pi\)
\(840\) 0 0
\(841\) −20.8541 −0.719107
\(842\) 0 0
\(843\) 3.09017 0.106431
\(844\) 0 0
\(845\) 3.05573 0.105120
\(846\) 0 0
\(847\) −1.93614 −0.0665266
\(848\) 0 0
\(849\) −9.00000 −0.308879
\(850\) 0 0
\(851\) −37.3607 −1.28071
\(852\) 0 0
\(853\) −11.1803 −0.382808 −0.191404 0.981511i \(-0.561304\pi\)
−0.191404 + 0.981511i \(0.561304\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −47.0476 −1.60712 −0.803558 0.595227i \(-0.797062\pi\)
−0.803558 + 0.595227i \(0.797062\pi\)
\(858\) 0 0
\(859\) −36.5410 −1.24676 −0.623382 0.781918i \(-0.714242\pi\)
−0.623382 + 0.781918i \(0.714242\pi\)
\(860\) 0 0
\(861\) 3.03444 0.103414
\(862\) 0 0
\(863\) −35.7771 −1.21787 −0.608933 0.793222i \(-0.708402\pi\)
−0.608933 + 0.793222i \(0.708402\pi\)
\(864\) 0 0
\(865\) −24.3607 −0.828288
\(866\) 0 0
\(867\) −57.2148 −1.94312
\(868\) 0 0
\(869\) 26.2918 0.891888
\(870\) 0 0
\(871\) −23.2918 −0.789212
\(872\) 0 0
\(873\) 6.23607 0.211059
\(874\) 0 0
\(875\) 0.360680 0.0121932
\(876\) 0 0
\(877\) −38.0689 −1.28549 −0.642747 0.766078i \(-0.722206\pi\)
−0.642747 + 0.766078i \(0.722206\pi\)
\(878\) 0 0
\(879\) 3.00000 0.101187
\(880\) 0 0
\(881\) −46.7426 −1.57480 −0.787400 0.616443i \(-0.788573\pi\)
−0.787400 + 0.616443i \(0.788573\pi\)
\(882\) 0 0
\(883\) −43.7984 −1.47393 −0.736966 0.675929i \(-0.763742\pi\)
−0.736966 + 0.675929i \(0.763742\pi\)
\(884\) 0 0
\(885\) −28.1803 −0.947272
\(886\) 0 0
\(887\) −19.7082 −0.661737 −0.330868 0.943677i \(-0.607342\pi\)
−0.330868 + 0.943677i \(0.607342\pi\)
\(888\) 0 0
\(889\) 2.12461 0.0712572
\(890\) 0 0
\(891\) 33.7771 1.13158
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 55.0132 1.83889
\(896\) 0 0
\(897\) −32.8885 −1.09812
\(898\) 0 0
\(899\) 12.5066 0.417118
\(900\) 0 0
\(901\) 27.8885 0.929102
\(902\) 0 0
\(903\) −0.236068 −0.00785585
\(904\) 0 0
\(905\) 38.8328 1.29085
\(906\) 0 0
\(907\) −47.4164 −1.57444 −0.787218 0.616675i \(-0.788479\pi\)
−0.787218 + 0.616675i \(0.788479\pi\)
\(908\) 0 0
\(909\) 0.0901699 0.00299075
\(910\) 0 0
\(911\) 26.3951 0.874509 0.437255 0.899338i \(-0.355951\pi\)
0.437255 + 0.899338i \(0.355951\pi\)
\(912\) 0 0
\(913\) 65.4853 2.16725
\(914\) 0 0
\(915\) 35.1246 1.16118
\(916\) 0 0
\(917\) 1.27051 0.0419559
\(918\) 0 0
\(919\) −41.2492 −1.36069 −0.680343 0.732894i \(-0.738169\pi\)
−0.680343 + 0.732894i \(0.738169\pi\)
\(920\) 0 0
\(921\) 56.2148 1.85234
\(922\) 0 0
\(923\) −52.7082 −1.73491
\(924\) 0 0
\(925\) −34.9230 −1.14826
\(926\) 0 0
\(927\) 0.708204 0.0232605
\(928\) 0 0
\(929\) −37.5066 −1.23055 −0.615275 0.788312i \(-0.710955\pi\)
−0.615275 + 0.788312i \(0.710955\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −6.94427 −0.227345
\(934\) 0 0
\(935\) 102.610 3.35570
\(936\) 0 0
\(937\) −44.1591 −1.44261 −0.721307 0.692616i \(-0.756458\pi\)
−0.721307 + 0.692616i \(0.756458\pi\)
\(938\) 0 0
\(939\) −28.5066 −0.930277
\(940\) 0 0
\(941\) −23.9230 −0.779867 −0.389934 0.920843i \(-0.627502\pi\)
−0.389934 + 0.920843i \(0.627502\pi\)
\(942\) 0 0
\(943\) 46.5066 1.51446
\(944\) 0 0
\(945\) 4.18034 0.135986
\(946\) 0 0
\(947\) −33.0132 −1.07278 −0.536392 0.843969i \(-0.680213\pi\)
−0.536392 + 0.843969i \(0.680213\pi\)
\(948\) 0 0
\(949\) 26.9574 0.875075
\(950\) 0 0
\(951\) −11.2361 −0.364354
\(952\) 0 0
\(953\) −40.7082 −1.31867 −0.659334 0.751850i \(-0.729162\pi\)
−0.659334 + 0.751850i \(0.729162\pi\)
\(954\) 0 0
\(955\) 45.1246 1.46020
\(956\) 0 0
\(957\) −20.2361 −0.654139
\(958\) 0 0
\(959\) −1.54102 −0.0497621
\(960\) 0 0
\(961\) −11.7984 −0.380593
\(962\) 0 0
\(963\) −6.38197 −0.205656
\(964\) 0 0
\(965\) 19.4164 0.625036
\(966\) 0 0
\(967\) −8.65248 −0.278245 −0.139122 0.990275i \(-0.544428\pi\)
−0.139122 + 0.990275i \(0.544428\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 52.5623 1.68680 0.843402 0.537283i \(-0.180549\pi\)
0.843402 + 0.537283i \(0.180549\pi\)
\(972\) 0 0
\(973\) 0.978714 0.0313761
\(974\) 0 0
\(975\) −30.7426 −0.984553
\(976\) 0 0
\(977\) 36.4164 1.16506 0.582532 0.812808i \(-0.302062\pi\)
0.582532 + 0.812808i \(0.302062\pi\)
\(978\) 0 0
\(979\) 29.3951 0.939472
\(980\) 0 0
\(981\) −0.0901699 −0.00287890
\(982\) 0 0
\(983\) 10.3262 0.329356 0.164678 0.986347i \(-0.447342\pi\)
0.164678 + 0.986347i \(0.447342\pi\)
\(984\) 0 0
\(985\) 8.18034 0.260647
\(986\) 0 0
\(987\) 4.85410 0.154508
\(988\) 0 0
\(989\) −3.61803 −0.115047
\(990\) 0 0
\(991\) 44.7984 1.42307 0.711534 0.702652i \(-0.248001\pi\)
0.711534 + 0.702652i \(0.248001\pi\)
\(992\) 0 0
\(993\) 26.6525 0.845791
\(994\) 0 0
\(995\) 3.41641 0.108307
\(996\) 0 0
\(997\) −23.7082 −0.750846 −0.375423 0.926854i \(-0.622503\pi\)
−0.375423 + 0.926854i \(0.622503\pi\)
\(998\) 0 0
\(999\) −34.9230 −1.10491
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.i.1.1 2
4.3 odd 2 5776.2.a.bd.1.2 2
19.18 odd 2 2888.2.a.k.1.2 yes 2
76.75 even 2 5776.2.a.x.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2888.2.a.i.1.1 2 1.1 even 1 trivial
2888.2.a.k.1.2 yes 2 19.18 odd 2
5776.2.a.x.1.1 2 76.75 even 2
5776.2.a.bd.1.2 2 4.3 odd 2