Properties

Label 2888.2.a.d.1.1
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2888.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} -4.00000 q^{5} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -4.00000 q^{5} -2.00000 q^{9} +3.00000 q^{11} +2.00000 q^{13} -4.00000 q^{15} +2.00000 q^{17} +6.00000 q^{23} +11.0000 q^{25} -5.00000 q^{27} -4.00000 q^{29} -10.0000 q^{31} +3.00000 q^{33} +2.00000 q^{37} +2.00000 q^{39} +9.00000 q^{41} -4.00000 q^{43} +8.00000 q^{45} -12.0000 q^{47} -7.00000 q^{49} +2.00000 q^{51} -2.00000 q^{53} -12.0000 q^{55} -1.00000 q^{59} -8.00000 q^{61} -8.00000 q^{65} +9.00000 q^{67} +6.00000 q^{69} -6.00000 q^{71} -9.00000 q^{73} +11.0000 q^{75} -4.00000 q^{79} +1.00000 q^{81} -5.00000 q^{83} -8.00000 q^{85} -4.00000 q^{87} -18.0000 q^{89} -10.0000 q^{93} +1.00000 q^{97} -6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) −4.00000 −1.03280
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) −10.0000 −1.79605 −0.898027 0.439941i \(-0.854999\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) 0 0
\(33\) 3.00000 0.522233
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 8.00000 1.19257
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) −12.0000 −1.61808
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.00000 −0.130189 −0.0650945 0.997879i \(-0.520735\pi\)
−0.0650945 + 0.997879i \(0.520735\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.00000 −0.992278
\(66\) 0 0
\(67\) 9.00000 1.09952 0.549762 0.835321i \(-0.314718\pi\)
0.549762 + 0.835321i \(0.314718\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −9.00000 −1.05337 −0.526685 0.850060i \(-0.676565\pi\)
−0.526685 + 0.850060i \(0.676565\pi\)
\(74\) 0 0
\(75\) 11.0000 1.27017
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −5.00000 −0.548821 −0.274411 0.961613i \(-0.588483\pi\)
−0.274411 + 0.961613i \(0.588483\pi\)
\(84\) 0 0
\(85\) −8.00000 −0.867722
\(86\) 0 0
\(87\) −4.00000 −0.428845
\(88\) 0 0
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −10.0000 −1.03695
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.00000 0.101535 0.0507673 0.998711i \(-0.483833\pi\)
0.0507673 + 0.998711i \(0.483833\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.0000 1.54678 0.773389 0.633932i \(-0.218560\pi\)
0.773389 + 0.633932i \(0.218560\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −1.00000 −0.0940721 −0.0470360 0.998893i \(-0.514978\pi\)
−0.0470360 + 0.998893i \(0.514978\pi\)
\(114\) 0 0
\(115\) −24.0000 −2.23801
\(116\) 0 0
\(117\) −4.00000 −0.369800
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 9.00000 0.811503
\(124\) 0 0
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) −6.00000 −0.532414 −0.266207 0.963916i \(-0.585770\pi\)
−0.266207 + 0.963916i \(0.585770\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 20.0000 1.72133
\(136\) 0 0
\(137\) 9.00000 0.768922 0.384461 0.923141i \(-0.374387\pi\)
0.384461 + 0.923141i \(0.374387\pi\)
\(138\) 0 0
\(139\) −13.0000 −1.10265 −0.551323 0.834292i \(-0.685877\pi\)
−0.551323 + 0.834292i \(0.685877\pi\)
\(140\) 0 0
\(141\) −12.0000 −1.01058
\(142\) 0 0
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 16.0000 1.32873
\(146\) 0 0
\(147\) −7.00000 −0.577350
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) 40.0000 3.21288
\(156\) 0 0
\(157\) 8.00000 0.638470 0.319235 0.947676i \(-0.396574\pi\)
0.319235 + 0.947676i \(0.396574\pi\)
\(158\) 0 0
\(159\) −2.00000 −0.158610
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −11.0000 −0.861586 −0.430793 0.902451i \(-0.641766\pi\)
−0.430793 + 0.902451i \(0.641766\pi\)
\(164\) 0 0
\(165\) −12.0000 −0.934199
\(166\) 0 0
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −26.0000 −1.97674 −0.988372 0.152057i \(-0.951410\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.00000 −0.0751646
\(178\) 0 0
\(179\) 9.00000 0.672692 0.336346 0.941739i \(-0.390809\pi\)
0.336346 + 0.941739i \(0.390809\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) −8.00000 −0.591377
\(184\) 0 0
\(185\) −8.00000 −0.588172
\(186\) 0 0
\(187\) 6.00000 0.438763
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) 0 0
\(195\) −8.00000 −0.572892
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −18.0000 −1.27599 −0.637993 0.770042i \(-0.720235\pi\)
−0.637993 + 0.770042i \(0.720235\pi\)
\(200\) 0 0
\(201\) 9.00000 0.634811
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −36.0000 −2.51435
\(206\) 0 0
\(207\) −12.0000 −0.834058
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) −6.00000 −0.411113
\(214\) 0 0
\(215\) 16.0000 1.09119
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −9.00000 −0.608164
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 0 0
\(223\) 10.0000 0.669650 0.334825 0.942280i \(-0.391323\pi\)
0.334825 + 0.942280i \(0.391323\pi\)
\(224\) 0 0
\(225\) −22.0000 −1.46667
\(226\) 0 0
\(227\) 19.0000 1.26107 0.630537 0.776159i \(-0.282835\pi\)
0.630537 + 0.776159i \(0.282835\pi\)
\(228\) 0 0
\(229\) −8.00000 −0.528655 −0.264327 0.964433i \(-0.585150\pi\)
−0.264327 + 0.964433i \(0.585150\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.0000 0.720634 0.360317 0.932830i \(-0.382669\pi\)
0.360317 + 0.932830i \(0.382669\pi\)
\(234\) 0 0
\(235\) 48.0000 3.13117
\(236\) 0 0
\(237\) −4.00000 −0.259828
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 21.0000 1.35273 0.676364 0.736567i \(-0.263554\pi\)
0.676364 + 0.736567i \(0.263554\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) 28.0000 1.78885
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −5.00000 −0.316862
\(250\) 0 0
\(251\) 5.00000 0.315597 0.157799 0.987471i \(-0.449560\pi\)
0.157799 + 0.987471i \(0.449560\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 0 0
\(255\) −8.00000 −0.500979
\(256\) 0 0
\(257\) 3.00000 0.187135 0.0935674 0.995613i \(-0.470173\pi\)
0.0935674 + 0.995613i \(0.470173\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 8.00000 0.495188
\(262\) 0 0
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) 0 0
\(265\) 8.00000 0.491436
\(266\) 0 0
\(267\) −18.0000 −1.10158
\(268\) 0 0
\(269\) 4.00000 0.243884 0.121942 0.992537i \(-0.461088\pi\)
0.121942 + 0.992537i \(0.461088\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 33.0000 1.98997
\(276\) 0 0
\(277\) 12.0000 0.721010 0.360505 0.932757i \(-0.382604\pi\)
0.360505 + 0.932757i \(0.382604\pi\)
\(278\) 0 0
\(279\) 20.0000 1.19737
\(280\) 0 0
\(281\) −13.0000 −0.775515 −0.387757 0.921761i \(-0.626750\pi\)
−0.387757 + 0.921761i \(0.626750\pi\)
\(282\) 0 0
\(283\) 13.0000 0.772770 0.386385 0.922338i \(-0.373724\pi\)
0.386385 + 0.922338i \(0.373724\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 1.00000 0.0586210
\(292\) 0 0
\(293\) −4.00000 −0.233682 −0.116841 0.993151i \(-0.537277\pi\)
−0.116841 + 0.993151i \(0.537277\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) 0 0
\(297\) −15.0000 −0.870388
\(298\) 0 0
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 12.0000 0.689382
\(304\) 0 0
\(305\) 32.0000 1.83231
\(306\) 0 0
\(307\) 25.0000 1.42683 0.713413 0.700744i \(-0.247149\pi\)
0.713413 + 0.700744i \(0.247149\pi\)
\(308\) 0 0
\(309\) −14.0000 −0.796432
\(310\) 0 0
\(311\) −2.00000 −0.113410 −0.0567048 0.998391i \(-0.518059\pi\)
−0.0567048 + 0.998391i \(0.518059\pi\)
\(312\) 0 0
\(313\) −19.0000 −1.07394 −0.536972 0.843600i \(-0.680432\pi\)
−0.536972 + 0.843600i \(0.680432\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 16.0000 0.893033
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 22.0000 1.22034
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 13.0000 0.714545 0.357272 0.934000i \(-0.383707\pi\)
0.357272 + 0.934000i \(0.383707\pi\)
\(332\) 0 0
\(333\) −4.00000 −0.219199
\(334\) 0 0
\(335\) −36.0000 −1.96689
\(336\) 0 0
\(337\) 3.00000 0.163420 0.0817102 0.996656i \(-0.473962\pi\)
0.0817102 + 0.996656i \(0.473962\pi\)
\(338\) 0 0
\(339\) −1.00000 −0.0543125
\(340\) 0 0
\(341\) −30.0000 −1.62459
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −24.0000 −1.29212
\(346\) 0 0
\(347\) −9.00000 −0.483145 −0.241573 0.970383i \(-0.577663\pi\)
−0.241573 + 0.970383i \(0.577663\pi\)
\(348\) 0 0
\(349\) −28.0000 −1.49881 −0.749403 0.662114i \(-0.769659\pi\)
−0.749403 + 0.662114i \(0.769659\pi\)
\(350\) 0 0
\(351\) −10.0000 −0.533761
\(352\) 0 0
\(353\) 11.0000 0.585471 0.292735 0.956193i \(-0.405434\pi\)
0.292735 + 0.956193i \(0.405434\pi\)
\(354\) 0 0
\(355\) 24.0000 1.27379
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.00000 −0.105556 −0.0527780 0.998606i \(-0.516808\pi\)
−0.0527780 + 0.998606i \(0.516808\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) 36.0000 1.88433
\(366\) 0 0
\(367\) −26.0000 −1.35719 −0.678594 0.734513i \(-0.737411\pi\)
−0.678594 + 0.734513i \(0.737411\pi\)
\(368\) 0 0
\(369\) −18.0000 −0.937043
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) −24.0000 −1.23935
\(376\) 0 0
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 0 0
\(381\) −6.00000 −0.307389
\(382\) 0 0
\(383\) −8.00000 −0.408781 −0.204390 0.978889i \(-0.565521\pi\)
−0.204390 + 0.978889i \(0.565521\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.00000 0.406663
\(388\) 0 0
\(389\) 4.00000 0.202808 0.101404 0.994845i \(-0.467667\pi\)
0.101404 + 0.994845i \(0.467667\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) −15.0000 −0.756650
\(394\) 0 0
\(395\) 16.0000 0.805047
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.00000 −0.149813 −0.0749064 0.997191i \(-0.523866\pi\)
−0.0749064 + 0.997191i \(0.523866\pi\)
\(402\) 0 0
\(403\) −20.0000 −0.996271
\(404\) 0 0
\(405\) −4.00000 −0.198762
\(406\) 0 0
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) −35.0000 −1.73064 −0.865319 0.501221i \(-0.832884\pi\)
−0.865319 + 0.501221i \(0.832884\pi\)
\(410\) 0 0
\(411\) 9.00000 0.443937
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 20.0000 0.981761
\(416\) 0 0
\(417\) −13.0000 −0.636613
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 0 0
\(423\) 24.0000 1.16692
\(424\) 0 0
\(425\) 22.0000 1.06716
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 6.00000 0.289683
\(430\) 0 0
\(431\) −30.0000 −1.44505 −0.722525 0.691345i \(-0.757018\pi\)
−0.722525 + 0.691345i \(0.757018\pi\)
\(432\) 0 0
\(433\) 10.0000 0.480569 0.240285 0.970702i \(-0.422759\pi\)
0.240285 + 0.970702i \(0.422759\pi\)
\(434\) 0 0
\(435\) 16.0000 0.767141
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −14.0000 −0.668184 −0.334092 0.942541i \(-0.608430\pi\)
−0.334092 + 0.942541i \(0.608430\pi\)
\(440\) 0 0
\(441\) 14.0000 0.666667
\(442\) 0 0
\(443\) 1.00000 0.0475114 0.0237557 0.999718i \(-0.492438\pi\)
0.0237557 + 0.999718i \(0.492438\pi\)
\(444\) 0 0
\(445\) 72.0000 3.41313
\(446\) 0 0
\(447\) −10.0000 −0.472984
\(448\) 0 0
\(449\) 33.0000 1.55737 0.778683 0.627417i \(-0.215888\pi\)
0.778683 + 0.627417i \(0.215888\pi\)
\(450\) 0 0
\(451\) 27.0000 1.27138
\(452\) 0 0
\(453\) 2.00000 0.0939682
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.0000 −0.514558 −0.257279 0.966337i \(-0.582826\pi\)
−0.257279 + 0.966337i \(0.582826\pi\)
\(458\) 0 0
\(459\) −10.0000 −0.466760
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) −34.0000 −1.58011 −0.790057 0.613033i \(-0.789949\pi\)
−0.790057 + 0.613033i \(0.789949\pi\)
\(464\) 0 0
\(465\) 40.0000 1.85496
\(466\) 0 0
\(467\) 5.00000 0.231372 0.115686 0.993286i \(-0.463093\pi\)
0.115686 + 0.993286i \(0.463093\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 8.00000 0.368621
\(472\) 0 0
\(473\) −12.0000 −0.551761
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.00000 0.183147
\(478\) 0 0
\(479\) 20.0000 0.913823 0.456912 0.889512i \(-0.348956\pi\)
0.456912 + 0.889512i \(0.348956\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.00000 −0.181631
\(486\) 0 0
\(487\) −26.0000 −1.17817 −0.589086 0.808070i \(-0.700512\pi\)
−0.589086 + 0.808070i \(0.700512\pi\)
\(488\) 0 0
\(489\) −11.0000 −0.497437
\(490\) 0 0
\(491\) 16.0000 0.722070 0.361035 0.932552i \(-0.382424\pi\)
0.361035 + 0.932552i \(0.382424\pi\)
\(492\) 0 0
\(493\) −8.00000 −0.360302
\(494\) 0 0
\(495\) 24.0000 1.07872
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 7.00000 0.313363 0.156682 0.987649i \(-0.449920\pi\)
0.156682 + 0.987649i \(0.449920\pi\)
\(500\) 0 0
\(501\) 16.0000 0.714827
\(502\) 0 0
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) −48.0000 −2.13597
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 0 0
\(509\) 16.0000 0.709188 0.354594 0.935020i \(-0.384619\pi\)
0.354594 + 0.935020i \(0.384619\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 56.0000 2.46765
\(516\) 0 0
\(517\) −36.0000 −1.58328
\(518\) 0 0
\(519\) −26.0000 −1.14127
\(520\) 0 0
\(521\) 1.00000 0.0438108 0.0219054 0.999760i \(-0.493027\pi\)
0.0219054 + 0.999760i \(0.493027\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −20.0000 −0.871214
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 2.00000 0.0867926
\(532\) 0 0
\(533\) 18.0000 0.779667
\(534\) 0 0
\(535\) −64.0000 −2.76696
\(536\) 0 0
\(537\) 9.00000 0.388379
\(538\) 0 0
\(539\) −21.0000 −0.904534
\(540\) 0 0
\(541\) 4.00000 0.171973 0.0859867 0.996296i \(-0.472596\pi\)
0.0859867 + 0.996296i \(0.472596\pi\)
\(542\) 0 0
\(543\) 14.0000 0.600798
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 16.0000 0.682863
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −8.00000 −0.339581
\(556\) 0 0
\(557\) −40.0000 −1.69485 −0.847427 0.530912i \(-0.821850\pi\)
−0.847427 + 0.530912i \(0.821850\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 6.00000 0.253320
\(562\) 0 0
\(563\) 11.0000 0.463595 0.231797 0.972764i \(-0.425539\pi\)
0.231797 + 0.972764i \(0.425539\pi\)
\(564\) 0 0
\(565\) 4.00000 0.168281
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −46.0000 −1.92842 −0.964210 0.265139i \(-0.914582\pi\)
−0.964210 + 0.265139i \(0.914582\pi\)
\(570\) 0 0
\(571\) 17.0000 0.711428 0.355714 0.934595i \(-0.384238\pi\)
0.355714 + 0.934595i \(0.384238\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) 0 0
\(575\) 66.0000 2.75239
\(576\) 0 0
\(577\) −37.0000 −1.54033 −0.770165 0.637845i \(-0.779826\pi\)
−0.770165 + 0.637845i \(0.779826\pi\)
\(578\) 0 0
\(579\) −6.00000 −0.249351
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6.00000 −0.248495
\(584\) 0 0
\(585\) 16.0000 0.661519
\(586\) 0 0
\(587\) 4.00000 0.165098 0.0825488 0.996587i \(-0.473694\pi\)
0.0825488 + 0.996587i \(0.473694\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −18.0000 −0.740421
\(592\) 0 0
\(593\) −21.0000 −0.862367 −0.431183 0.902264i \(-0.641904\pi\)
−0.431183 + 0.902264i \(0.641904\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −18.0000 −0.736691
\(598\) 0 0
\(599\) 38.0000 1.55264 0.776319 0.630340i \(-0.217085\pi\)
0.776319 + 0.630340i \(0.217085\pi\)
\(600\) 0 0
\(601\) −13.0000 −0.530281 −0.265141 0.964210i \(-0.585418\pi\)
−0.265141 + 0.964210i \(0.585418\pi\)
\(602\) 0 0
\(603\) −18.0000 −0.733017
\(604\) 0 0
\(605\) 8.00000 0.325246
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −24.0000 −0.970936
\(612\) 0 0
\(613\) −22.0000 −0.888572 −0.444286 0.895885i \(-0.646543\pi\)
−0.444286 + 0.895885i \(0.646543\pi\)
\(614\) 0 0
\(615\) −36.0000 −1.45166
\(616\) 0 0
\(617\) 3.00000 0.120775 0.0603877 0.998175i \(-0.480766\pi\)
0.0603877 + 0.998175i \(0.480766\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) −30.0000 −1.20386
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) −12.0000 −0.476957
\(634\) 0 0
\(635\) 24.0000 0.952411
\(636\) 0 0
\(637\) −14.0000 −0.554700
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) 33.0000 1.30342 0.651711 0.758468i \(-0.274052\pi\)
0.651711 + 0.758468i \(0.274052\pi\)
\(642\) 0 0
\(643\) 5.00000 0.197181 0.0985904 0.995128i \(-0.468567\pi\)
0.0985904 + 0.995128i \(0.468567\pi\)
\(644\) 0 0
\(645\) 16.0000 0.629999
\(646\) 0 0
\(647\) −14.0000 −0.550397 −0.275198 0.961387i \(-0.588744\pi\)
−0.275198 + 0.961387i \(0.588744\pi\)
\(648\) 0 0
\(649\) −3.00000 −0.117760
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 36.0000 1.40879 0.704394 0.709809i \(-0.251219\pi\)
0.704394 + 0.709809i \(0.251219\pi\)
\(654\) 0 0
\(655\) 60.0000 2.34439
\(656\) 0 0
\(657\) 18.0000 0.702247
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) 20.0000 0.777910 0.388955 0.921257i \(-0.372836\pi\)
0.388955 + 0.921257i \(0.372836\pi\)
\(662\) 0 0
\(663\) 4.00000 0.155347
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −24.0000 −0.929284
\(668\) 0 0
\(669\) 10.0000 0.386622
\(670\) 0 0
\(671\) −24.0000 −0.926510
\(672\) 0 0
\(673\) 30.0000 1.15642 0.578208 0.815890i \(-0.303752\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(674\) 0 0
\(675\) −55.0000 −2.11695
\(676\) 0 0
\(677\) −2.00000 −0.0768662 −0.0384331 0.999261i \(-0.512237\pi\)
−0.0384331 + 0.999261i \(0.512237\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 19.0000 0.728082
\(682\) 0 0
\(683\) −28.0000 −1.07139 −0.535695 0.844411i \(-0.679950\pi\)
−0.535695 + 0.844411i \(0.679950\pi\)
\(684\) 0 0
\(685\) −36.0000 −1.37549
\(686\) 0 0
\(687\) −8.00000 −0.305219
\(688\) 0 0
\(689\) −4.00000 −0.152388
\(690\) 0 0
\(691\) 36.0000 1.36950 0.684752 0.728776i \(-0.259910\pi\)
0.684752 + 0.728776i \(0.259910\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 52.0000 1.97247
\(696\) 0 0
\(697\) 18.0000 0.681799
\(698\) 0 0
\(699\) 11.0000 0.416058
\(700\) 0 0
\(701\) −12.0000 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 48.0000 1.80778
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 18.0000 0.676004 0.338002 0.941145i \(-0.390249\pi\)
0.338002 + 0.941145i \(0.390249\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) 0 0
\(713\) −60.0000 −2.24702
\(714\) 0 0
\(715\) −24.0000 −0.897549
\(716\) 0 0
\(717\) 12.0000 0.448148
\(718\) 0 0
\(719\) −34.0000 −1.26799 −0.633993 0.773339i \(-0.718585\pi\)
−0.633993 + 0.773339i \(0.718585\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 21.0000 0.780998
\(724\) 0 0
\(725\) −44.0000 −1.63412
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) 0 0
\(735\) 28.0000 1.03280
\(736\) 0 0
\(737\) 27.0000 0.994558
\(738\) 0 0
\(739\) −5.00000 −0.183928 −0.0919640 0.995762i \(-0.529314\pi\)
−0.0919640 + 0.995762i \(0.529314\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.00000 −0.220119 −0.110059 0.993925i \(-0.535104\pi\)
−0.110059 + 0.993925i \(0.535104\pi\)
\(744\) 0 0
\(745\) 40.0000 1.46549
\(746\) 0 0
\(747\) 10.0000 0.365881
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 38.0000 1.38664 0.693320 0.720630i \(-0.256147\pi\)
0.693320 + 0.720630i \(0.256147\pi\)
\(752\) 0 0
\(753\) 5.00000 0.182210
\(754\) 0 0
\(755\) −8.00000 −0.291150
\(756\) 0 0
\(757\) 14.0000 0.508839 0.254419 0.967094i \(-0.418116\pi\)
0.254419 + 0.967094i \(0.418116\pi\)
\(758\) 0 0
\(759\) 18.0000 0.653359
\(760\) 0 0
\(761\) 17.0000 0.616250 0.308125 0.951346i \(-0.400299\pi\)
0.308125 + 0.951346i \(0.400299\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 16.0000 0.578481
\(766\) 0 0
\(767\) −2.00000 −0.0722158
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) 3.00000 0.108042
\(772\) 0 0
\(773\) 52.0000 1.87031 0.935155 0.354239i \(-0.115260\pi\)
0.935155 + 0.354239i \(0.115260\pi\)
\(774\) 0 0
\(775\) −110.000 −3.95132
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) 0 0
\(783\) 20.0000 0.714742
\(784\) 0 0
\(785\) −32.0000 −1.14213
\(786\) 0 0
\(787\) 41.0000 1.46149 0.730746 0.682649i \(-0.239172\pi\)
0.730746 + 0.682649i \(0.239172\pi\)
\(788\) 0 0
\(789\) 16.0000 0.569615
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −16.0000 −0.568177
\(794\) 0 0
\(795\) 8.00000 0.283731
\(796\) 0 0
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858 + 0.668338i \(0.232994\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) 0 0
\(801\) 36.0000 1.27200
\(802\) 0 0
\(803\) −27.0000 −0.952809
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.00000 0.140807
\(808\) 0 0
\(809\) 21.0000 0.738321 0.369160 0.929366i \(-0.379645\pi\)
0.369160 + 0.929366i \(0.379645\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) −20.0000 −0.701431
\(814\) 0 0
\(815\) 44.0000 1.54125
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −38.0000 −1.32621 −0.663105 0.748527i \(-0.730762\pi\)
−0.663105 + 0.748527i \(0.730762\pi\)
\(822\) 0 0
\(823\) −26.0000 −0.906303 −0.453152 0.891434i \(-0.649700\pi\)
−0.453152 + 0.891434i \(0.649700\pi\)
\(824\) 0 0
\(825\) 33.0000 1.14891
\(826\) 0 0
\(827\) −55.0000 −1.91254 −0.956269 0.292490i \(-0.905516\pi\)
−0.956269 + 0.292490i \(0.905516\pi\)
\(828\) 0 0
\(829\) −12.0000 −0.416777 −0.208389 0.978046i \(-0.566822\pi\)
−0.208389 + 0.978046i \(0.566822\pi\)
\(830\) 0 0
\(831\) 12.0000 0.416275
\(832\) 0 0
\(833\) −14.0000 −0.485071
\(834\) 0 0
\(835\) −64.0000 −2.21481
\(836\) 0 0
\(837\) 50.0000 1.72825
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 0 0
\(843\) −13.0000 −0.447744
\(844\) 0 0
\(845\) 36.0000 1.23844
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 13.0000 0.446159
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) 0 0
\(853\) 42.0000 1.43805 0.719026 0.694983i \(-0.244588\pi\)
0.719026 + 0.694983i \(0.244588\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −35.0000 −1.19558 −0.597789 0.801654i \(-0.703954\pi\)
−0.597789 + 0.801654i \(0.703954\pi\)
\(858\) 0 0
\(859\) 29.0000 0.989467 0.494734 0.869045i \(-0.335266\pi\)
0.494734 + 0.869045i \(0.335266\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.00000 0.204242 0.102121 0.994772i \(-0.467437\pi\)
0.102121 + 0.994772i \(0.467437\pi\)
\(864\) 0 0
\(865\) 104.000 3.53611
\(866\) 0 0
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) −12.0000 −0.407072
\(870\) 0 0
\(871\) 18.0000 0.609907
\(872\) 0 0
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 40.0000 1.35070 0.675352 0.737496i \(-0.263992\pi\)
0.675352 + 0.737496i \(0.263992\pi\)
\(878\) 0 0
\(879\) −4.00000 −0.134917
\(880\) 0 0
\(881\) 7.00000 0.235836 0.117918 0.993023i \(-0.462378\pi\)
0.117918 + 0.993023i \(0.462378\pi\)
\(882\) 0 0
\(883\) −43.0000 −1.44707 −0.723533 0.690290i \(-0.757483\pi\)
−0.723533 + 0.690290i \(0.757483\pi\)
\(884\) 0 0
\(885\) 4.00000 0.134459
\(886\) 0 0
\(887\) 32.0000 1.07445 0.537227 0.843437i \(-0.319472\pi\)
0.537227 + 0.843437i \(0.319472\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −36.0000 −1.20335
\(896\) 0 0
\(897\) 12.0000 0.400668
\(898\) 0 0
\(899\) 40.0000 1.33407
\(900\) 0 0
\(901\) −4.00000 −0.133259
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −56.0000 −1.86150
\(906\) 0 0
\(907\) 49.0000 1.62702 0.813509 0.581552i \(-0.197554\pi\)
0.813509 + 0.581552i \(0.197554\pi\)
\(908\) 0 0
\(909\) −24.0000 −0.796030
\(910\) 0 0
\(911\) −14.0000 −0.463841 −0.231920 0.972735i \(-0.574501\pi\)
−0.231920 + 0.972735i \(0.574501\pi\)
\(912\) 0 0
\(913\) −15.0000 −0.496428
\(914\) 0 0
\(915\) 32.0000 1.05789
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −26.0000 −0.857661 −0.428830 0.903385i \(-0.641074\pi\)
−0.428830 + 0.903385i \(0.641074\pi\)
\(920\) 0 0
\(921\) 25.0000 0.823778
\(922\) 0 0
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) 22.0000 0.723356
\(926\) 0 0
\(927\) 28.0000 0.919641
\(928\) 0 0
\(929\) 21.0000 0.688988 0.344494 0.938789i \(-0.388051\pi\)
0.344494 + 0.938789i \(0.388051\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −2.00000 −0.0654771
\(934\) 0 0
\(935\) −24.0000 −0.784884
\(936\) 0 0
\(937\) 11.0000 0.359354 0.179677 0.983726i \(-0.442495\pi\)
0.179677 + 0.983726i \(0.442495\pi\)
\(938\) 0 0
\(939\) −19.0000 −0.620042
\(940\) 0 0
\(941\) −10.0000 −0.325991 −0.162995 0.986627i \(-0.552116\pi\)
−0.162995 + 0.986627i \(0.552116\pi\)
\(942\) 0 0
\(943\) 54.0000 1.75848
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −28.0000 −0.909878 −0.454939 0.890523i \(-0.650339\pi\)
−0.454939 + 0.890523i \(0.650339\pi\)
\(948\) 0 0
\(949\) −18.0000 −0.584305
\(950\) 0 0
\(951\) 6.00000 0.194563
\(952\) 0 0
\(953\) 1.00000 0.0323932 0.0161966 0.999869i \(-0.494844\pi\)
0.0161966 + 0.999869i \(0.494844\pi\)
\(954\) 0 0
\(955\) −48.0000 −1.55324
\(956\) 0 0
\(957\) −12.0000 −0.387905
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 0 0
\(963\) −32.0000 −1.03119
\(964\) 0 0
\(965\) 24.0000 0.772587
\(966\) 0 0
\(967\) 54.0000 1.73652 0.868261 0.496107i \(-0.165238\pi\)
0.868261 + 0.496107i \(0.165238\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 53.0000 1.70085 0.850425 0.526096i \(-0.176345\pi\)
0.850425 + 0.526096i \(0.176345\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 22.0000 0.704564
\(976\) 0 0
\(977\) −47.0000 −1.50366 −0.751832 0.659355i \(-0.770829\pi\)
−0.751832 + 0.659355i \(0.770829\pi\)
\(978\) 0 0
\(979\) −54.0000 −1.72585
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32.0000 1.02064 0.510321 0.859984i \(-0.329527\pi\)
0.510321 + 0.859984i \(0.329527\pi\)
\(984\) 0 0
\(985\) 72.0000 2.29411
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 0 0
\(993\) 13.0000 0.412543
\(994\) 0 0
\(995\) 72.0000 2.28255
\(996\) 0 0
\(997\) −32.0000 −1.01345 −0.506725 0.862108i \(-0.669144\pi\)
−0.506725 + 0.862108i \(0.669144\pi\)
\(998\) 0 0
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.d.1.1 1
4.3 odd 2 5776.2.a.e.1.1 1
19.7 even 3 152.2.i.b.49.1 2
19.11 even 3 152.2.i.b.121.1 yes 2
19.18 odd 2 2888.2.a.a.1.1 1
57.11 odd 6 1368.2.s.a.577.1 2
57.26 odd 6 1368.2.s.a.505.1 2
76.7 odd 6 304.2.i.d.49.1 2
76.11 odd 6 304.2.i.d.273.1 2
76.75 even 2 5776.2.a.j.1.1 1
152.11 odd 6 1216.2.i.b.577.1 2
152.45 even 6 1216.2.i.f.961.1 2
152.83 odd 6 1216.2.i.b.961.1 2
152.125 even 6 1216.2.i.f.577.1 2
228.11 even 6 2736.2.s.a.577.1 2
228.83 even 6 2736.2.s.a.1873.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.i.b.49.1 2 19.7 even 3
152.2.i.b.121.1 yes 2 19.11 even 3
304.2.i.d.49.1 2 76.7 odd 6
304.2.i.d.273.1 2 76.11 odd 6
1216.2.i.b.577.1 2 152.11 odd 6
1216.2.i.b.961.1 2 152.83 odd 6
1216.2.i.f.577.1 2 152.125 even 6
1216.2.i.f.961.1 2 152.45 even 6
1368.2.s.a.505.1 2 57.26 odd 6
1368.2.s.a.577.1 2 57.11 odd 6
2736.2.s.a.577.1 2 228.11 even 6
2736.2.s.a.1873.1 2 228.83 even 6
2888.2.a.a.1.1 1 19.18 odd 2
2888.2.a.d.1.1 1 1.1 even 1 trivial
5776.2.a.e.1.1 1 4.3 odd 2
5776.2.a.j.1.1 1 76.75 even 2