Newspace parameters
Level: | \( N \) | \(=\) | \( 2888 = 2^{3} \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2888.u (of order \(18\), degree \(6\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.44129975648\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | \(\Q(\zeta_{18})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} - x^{3} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 152) |
Projective image: | \(D_{9}\) |
Projective field: | Galois closure of 9.1.69564674215936.1 |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2888\mathbb{Z}\right)^\times\).
\(n\) | \(1445\) | \(2167\) | \(2529\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(-\zeta_{18}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
99.1 |
|
0.939693 | + | 0.342020i | −0.266044 | − | 1.50881i | 0.766044 | + | 0.642788i | 0 | 0.266044 | − | 1.50881i | 0 | 0.500000 | + | 0.866025i | −1.26604 | + | 0.460802i | 0 | ||||||||||||||||||||||||
595.1 | −0.766044 | + | 0.642788i | 0.326352 | + | 0.118782i | 0.173648 | − | 0.984808i | 0 | −0.326352 | + | 0.118782i | 0 | 0.500000 | + | 0.866025i | −0.673648 | − | 0.565258i | 0 | |||||||||||||||||||||||||
1859.1 | −0.766044 | − | 0.642788i | 0.326352 | − | 0.118782i | 0.173648 | + | 0.984808i | 0 | −0.326352 | − | 0.118782i | 0 | 0.500000 | − | 0.866025i | −0.673648 | + | 0.565258i | 0 | |||||||||||||||||||||||||
1867.1 | 0.939693 | − | 0.342020i | −0.266044 | + | 1.50881i | 0.766044 | − | 0.642788i | 0 | 0.266044 | + | 1.50881i | 0 | 0.500000 | − | 0.866025i | −1.26604 | − | 0.460802i | 0 | |||||||||||||||||||||||||
2411.1 | −0.173648 | + | 0.984808i | 1.43969 | + | 1.20805i | −0.939693 | − | 0.342020i | 0 | −1.43969 | + | 1.20805i | 0 | 0.500000 | − | 0.866025i | 0.439693 | + | 2.49362i | 0 | |||||||||||||||||||||||||
2555.1 | −0.173648 | − | 0.984808i | 1.43969 | − | 1.20805i | −0.939693 | + | 0.342020i | 0 | −1.43969 | − | 1.20805i | 0 | 0.500000 | + | 0.866025i | 0.439693 | − | 2.49362i | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | CM by \(\Q(\sqrt{-2}) \) |
19.e | even | 9 | 1 | inner |
152.u | odd | 18 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{6} - 3T_{3}^{5} + 6T_{3}^{4} - 8T_{3}^{3} + 12T_{3}^{2} - 6T_{3} + 1 \)
acting on \(S_{1}^{\mathrm{new}}(2888, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} - T^{3} + 1 \)
$3$
\( T^{6} - 3 T^{5} + 6 T^{4} - 8 T^{3} + \cdots + 1 \)
$5$
\( T^{6} \)
$7$
\( T^{6} \)
$11$
\( T^{6} + 3 T^{4} + 2 T^{3} + 9 T^{2} + \cdots + 1 \)
$13$
\( T^{6} \)
$17$
\( T^{6} - T^{3} + 1 \)
$19$
\( T^{6} \)
$23$
\( T^{6} \)
$29$
\( T^{6} \)
$31$
\( T^{6} \)
$37$
\( T^{6} \)
$41$
\( T^{6} + 6 T^{5} + 15 T^{4} + 19 T^{3} + \cdots + 1 \)
$43$
\( T^{6} - T^{3} + 1 \)
$47$
\( T^{6} \)
$53$
\( T^{6} \)
$59$
\( T^{6} + 6 T^{5} + 15 T^{4} + 19 T^{3} + \cdots + 1 \)
$61$
\( T^{6} \)
$67$
\( T^{6} - 3 T^{5} + 6 T^{4} - 8 T^{3} + \cdots + 1 \)
$71$
\( T^{6} \)
$73$
\( T^{6} + 3 T^{5} + 6 T^{4} + 8 T^{3} + \cdots + 1 \)
$79$
\( T^{6} \)
$83$
\( T^{6} + 3 T^{4} + 2 T^{3} + 9 T^{2} + \cdots + 1 \)
$89$
\( T^{6} + T^{3} + 1 \)
$97$
\( T^{6} - 3 T^{5} + 6 T^{4} - 8 T^{3} + \cdots + 1 \)
show more
show less