Properties

Label 2888.1.k.b.2819.2
Level $2888$
Weight $1$
Character 2888.2819
Analytic conductor $1.441$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2888.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.44129975648\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 152)
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.69564674215936.1

Embedding invariants

Embedding label 2819.2
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 2888.2819
Dual form 2888.1.k.b.2595.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.173648 - 0.300767i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.173648 + 0.300767i) q^{6} +1.00000 q^{8} +(0.439693 - 0.761570i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.173648 - 0.300767i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.173648 + 0.300767i) q^{6} +1.00000 q^{8} +(0.439693 - 0.761570i) q^{9} +1.53209 q^{11} +0.347296 q^{12} +(-0.500000 - 0.866025i) q^{16} +(0.500000 + 0.866025i) q^{17} -0.879385 q^{18} +(-0.766044 - 1.32683i) q^{22} +(-0.173648 - 0.300767i) q^{24} +(-0.500000 + 0.866025i) q^{25} -0.652704 q^{27} +(-0.500000 + 0.866025i) q^{32} +(-0.266044 - 0.460802i) q^{33} +(0.500000 - 0.866025i) q^{34} +(0.439693 + 0.761570i) q^{36} +(0.939693 + 1.62760i) q^{41} +(0.500000 + 0.866025i) q^{43} +(-0.766044 + 1.32683i) q^{44} +(-0.173648 + 0.300767i) q^{48} +1.00000 q^{49} +1.00000 q^{50} +(0.173648 - 0.300767i) q^{51} +(0.326352 + 0.565258i) q^{54} +(-0.766044 - 1.32683i) q^{59} +1.00000 q^{64} +(-0.266044 + 0.460802i) q^{66} +(0.939693 - 1.62760i) q^{67} -1.00000 q^{68} +(0.439693 - 0.761570i) q^{72} +(-0.766044 - 1.32683i) q^{73} +0.347296 q^{75} +(-0.326352 - 0.565258i) q^{81} +(0.939693 - 1.62760i) q^{82} -1.87939 q^{83} +(0.500000 - 0.866025i) q^{86} +1.53209 q^{88} +(0.500000 - 0.866025i) q^{89} +0.347296 q^{96} +(0.939693 + 1.62760i) q^{97} +(-0.500000 - 0.866025i) q^{98} +(0.673648 - 1.16679i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{4} + 6 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{2} - 3 q^{4} + 6 q^{8} - 3 q^{9} - 3 q^{16} + 3 q^{17} + 6 q^{18} - 3 q^{25} - 6 q^{27} - 3 q^{32} + 3 q^{33} + 3 q^{34} - 3 q^{36} + 3 q^{43} + 6 q^{49} + 6 q^{50} + 3 q^{54} + 6 q^{64} + 3 q^{66} - 6 q^{68} - 3 q^{72} - 3 q^{81} + 3 q^{86} + 3 q^{89} - 3 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2888\mathbb{Z}\right)^\times\).

\(n\) \(1445\) \(2167\) \(2529\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.500000 0.866025i
\(3\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(4\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(5\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 1.00000 1.00000
\(9\) 0.439693 0.761570i 0.439693 0.761570i
\(10\) 0 0
\(11\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(12\) 0.347296 0.347296
\(13\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.500000 0.866025i
\(17\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) −0.879385 −0.879385
\(19\) 0 0
\(20\) 0 0
\(21\) 0 0
\(22\) −0.766044 1.32683i −0.766044 1.32683i
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) −0.173648 0.300767i −0.173648 0.300767i
\(25\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(26\) 0 0
\(27\) −0.652704 −0.652704
\(28\) 0 0
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(33\) −0.266044 0.460802i −0.266044 0.460802i
\(34\) 0.500000 0.866025i 0.500000 0.866025i
\(35\) 0 0
\(36\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(42\) 0 0
\(43\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(44\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(49\) 1.00000 1.00000
\(50\) 1.00000 1.00000
\(51\) 0.173648 0.300767i 0.173648 0.300767i
\(52\) 0 0
\(53\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(54\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(60\) 0 0
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(67\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(68\) −1.00000 −1.00000
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(72\) 0.439693 0.761570i 0.439693 0.761570i
\(73\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(74\) 0 0
\(75\) 0.347296 0.347296
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 0 0
\(81\) −0.326352 0.565258i −0.326352 0.565258i
\(82\) 0.939693 1.62760i 0.939693 1.62760i
\(83\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.500000 0.866025i 0.500000 0.866025i
\(87\) 0 0
\(88\) 1.53209 1.53209
\(89\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0.347296 0.347296
\(97\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(98\) −0.500000 0.866025i −0.500000 0.866025i
\(99\) 0.673648 1.16679i 0.673648 1.16679i
\(100\) −0.500000 0.866025i −0.500000 0.866025i
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) −0.347296 −0.347296
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0.326352 0.565258i 0.326352 0.565258i
\(109\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(119\) 0 0
\(120\) 0 0
\(121\) 1.34730 1.34730
\(122\) 0 0
\(123\) 0.326352 0.565258i 0.326352 0.565258i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(128\) −0.500000 0.866025i −0.500000 0.866025i
\(129\) 0.173648 0.300767i 0.173648 0.300767i
\(130\) 0 0
\(131\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(132\) 0.532089 0.532089
\(133\) 0 0
\(134\) −1.87939 −1.87939
\(135\) 0 0
\(136\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(137\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(138\) 0 0
\(139\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.879385 −0.879385
\(145\) 0 0
\(146\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(147\) −0.173648 0.300767i −0.173648 0.300767i
\(148\) 0 0
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) −0.173648 0.300767i −0.173648 0.300767i
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0.879385 0.879385
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −0.326352 + 0.565258i −0.326352 + 0.565258i
\(163\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(164\) −1.87939 −1.87939
\(165\) 0 0
\(166\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(167\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.500000 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) −1.00000 −1.00000
\(173\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.766044 1.32683i −0.766044 1.32683i
\(177\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(178\) −1.00000 −1.00000
\(179\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(180\) 0 0
\(181\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −0.173648 0.300767i −0.173648 0.300767i
\(193\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0.939693 1.62760i 0.939693 1.62760i
\(195\) 0 0
\(196\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −1.34730 −1.34730
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(201\) −0.652704 −0.652704
\(202\) 0 0
\(203\) 0 0
\(204\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(215\) 0 0
\(216\) −0.652704 −0.652704
\(217\) 0 0
\(218\) 0 0
\(219\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(224\) 0 0
\(225\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(226\) −0.766044 1.32683i −0.766044 1.32683i
\(227\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.53209 1.53209
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(242\) −0.673648 1.16679i −0.673648 1.16679i
\(243\) −0.439693 + 0.761570i −0.439693 + 0.761570i
\(244\) 0 0
\(245\) 0 0
\(246\) −0.652704 −0.652704
\(247\) 0 0
\(248\) 0 0
\(249\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(250\) 0 0
\(251\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(257\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(258\) −0.347296 −0.347296
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) −0.266044 0.460802i −0.266044 0.460802i
\(265\) 0 0
\(266\) 0 0
\(267\) −0.347296 −0.347296
\(268\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(269\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(270\) 0 0
\(271\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(272\) 0.500000 0.866025i 0.500000 0.866025i
\(273\) 0 0
\(274\) 0.347296 0.347296
\(275\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) −1.87939 −1.87939
\(279\) 0 0
\(280\) 0 0
\(281\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(282\) 0 0
\(283\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(289\) 0 0
\(290\) 0 0
\(291\) 0.326352 0.565258i 0.326352 0.565258i
\(292\) 1.53209 1.53209
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(295\) 0 0
\(296\) 0 0
\(297\) −1.00000 −1.00000
\(298\) 0 0
\(299\) 0 0
\(300\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −0.439693 0.761570i −0.439693 0.761570i
\(307\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(322\) 0 0
\(323\) 0 0
\(324\) 0.652704 0.652704
\(325\) 0 0
\(326\) −0.173648 0.300767i −0.173648 0.300767i
\(327\) 0 0
\(328\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(329\) 0 0
\(330\) 0 0
\(331\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(332\) 0.939693 1.62760i 0.939693 1.62760i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(338\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(339\) −0.266044 0.460802i −0.266044 0.460802i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(353\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(354\) 0.532089 0.532089
\(355\) 0 0
\(356\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(357\) 0 0
\(358\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(359\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −0.233956 0.405223i −0.233956 0.405223i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) 1.65270 1.65270
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0.766044 1.32683i 0.766044 1.32683i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(384\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(385\) 0 0
\(386\) 0.500000 0.866025i 0.500000 0.866025i
\(387\) 0.879385 0.879385
\(388\) −1.87939 −1.87939
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000 1.00000
\(393\) −0.0603074 + 0.104455i −0.0603074 + 0.104455i
\(394\) 0 0
\(395\) 0 0
\(396\) 0.673648 + 1.16679i 0.673648 + 1.16679i
\(397\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.00000 1.00000
\(401\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(402\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0.173648 0.300767i 0.173648 0.300767i
\(409\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(410\) 0 0
\(411\) 0.120615 0.120615
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.652704 −0.652704
\(418\) 0 0
\(419\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0 0
\(421\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(422\) 0.500000 0.866025i 0.500000 0.866025i
\(423\) 0 0
\(424\) 0 0
\(425\) −1.00000 −1.00000
\(426\) 0 0
\(427\) 0 0
\(428\) 0.500000 0.866025i 0.500000 0.866025i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(433\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0.532089 0.532089
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) 0.439693 0.761570i 0.439693 0.761570i
\(442\) 0 0
\(443\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(450\) 0.439693 0.761570i 0.439693 0.761570i
\(451\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(452\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(453\) 0 0
\(454\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(455\) 0 0
\(456\) 0 0
\(457\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(458\) 0 0
\(459\) −0.326352 0.565258i −0.326352 0.565258i
\(460\) 0 0
\(461\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(467\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −0.766044 1.32683i −0.766044 1.32683i
\(473\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0.347296 0.347296
\(483\) 0 0
\(484\) −0.673648 + 1.16679i −0.673648 + 1.16679i
\(485\) 0 0
\(486\) 0.879385 0.879385
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) −0.0603074 0.104455i −0.0603074 0.104455i
\(490\) 0 0
\(491\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0.326352 0.565258i 0.326352 0.565258i
\(499\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.347296 0.347296
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(508\) 0 0
\(509\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 0.347296 0.347296
\(515\) 0 0
\(516\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(522\) 0 0
\(523\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0.347296 0.347296
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(529\) −0.500000 0.866025i −0.500000 0.866025i
\(530\) 0 0
\(531\) −1.34730 −1.34730
\(532\) 0 0
\(533\) 0 0
\(534\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(535\) 0 0
\(536\) 0.939693 1.62760i 0.939693 1.62760i
\(537\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(538\) 0 0
\(539\) 1.53209 1.53209
\(540\) 0 0
\(541\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −1.00000 −1.00000
\(545\) 0 0
\(546\) 0 0
\(547\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(548\) −0.173648 0.300767i −0.173648 0.300767i
\(549\) 0 0
\(550\) 1.53209 1.53209
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(557\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.266044 0.460802i 0.266044 0.460802i
\(562\) 0.347296 0.347296
\(563\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(567\) 0 0
\(568\) 0 0
\(569\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.439693 0.761570i 0.439693 0.761570i
\(577\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(578\) 0 0
\(579\) 0.173648 0.300767i 0.173648 0.300767i
\(580\) 0 0
\(581\) 0 0
\(582\) −0.652704 −0.652704
\(583\) 0 0
\(584\) −0.766044 1.32683i −0.766044 1.32683i
\(585\) 0 0
\(586\) 0 0
\(587\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) 0.347296 0.347296
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(594\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) 0.347296 0.347296
\(601\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(602\) 0 0
\(603\) −0.826352 1.43128i −0.826352 1.43128i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.439693 + 0.761570i −0.439693 + 0.761570i
\(613\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(614\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(618\) 0 0
\(619\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.500000 0.866025i
\(626\) 0.347296 0.347296
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(632\) 0 0
\(633\) 0.173648 0.300767i 0.173648 0.300767i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(642\) 0.173648 0.300767i 0.173648 0.300767i
\(643\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −0.326352 0.565258i −0.326352 0.565258i
\(649\) −1.17365 2.03282i −1.17365 2.03282i
\(650\) 0 0
\(651\) 0 0
\(652\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.939693 1.62760i 0.939693 1.62760i
\(657\) −1.34730 −1.34730
\(658\) 0 0
\(659\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(660\) 0 0
\(661\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) −0.766044 1.32683i −0.766044 1.32683i
\(663\) 0 0
\(664\) −1.87939 −1.87939
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(675\) 0.326352 0.565258i 0.326352 0.565258i
\(676\) 1.00000 1.00000
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(679\) 0 0
\(680\) 0 0
\(681\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(682\) 0 0
\(683\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0.500000 0.866025i 0.500000 0.866025i
\(689\) 0 0
\(690\) 0 0
\(691\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.939693 1.62760i 0.939693 1.62760i
\(695\) 0 0
\(696\) 0 0
\(697\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(698\) 0 0
\(699\) −0.0603074 + 0.104455i −0.0603074 + 0.104455i
\(700\) 0 0
\(701\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.53209 1.53209
\(705\) 0 0
\(706\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(707\) 0 0
\(708\) −0.266044 0.460802i −0.266044 0.460802i
\(709\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.500000 0.866025i 0.500000 0.866025i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.939693 1.62760i 0.939693 1.62760i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0.120615 0.120615
\(724\) 0 0
\(725\) 0 0
\(726\) −0.233956 + 0.405223i −0.233956 + 0.405223i
\(727\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) 0 0
\(729\) −0.347296 −0.347296
\(730\) 0 0
\(731\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.43969 2.49362i 1.43969 2.49362i
\(738\) −0.826352 1.43128i −0.826352 1.43128i
\(739\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.826352 + 1.43128i −0.826352 + 1.43128i
\(748\) −1.53209 −1.53209
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0 0
\(753\) 0.120615 0.120615
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(758\) −1.00000 1.73205i −1.00000 1.73205i
\(759\) 0 0
\(760\) 0 0
\(761\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.347296 0.347296
\(769\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(770\) 0 0
\(771\) 0.120615 0.120615
\(772\) −1.00000 −1.00000
\(773\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(774\) −0.439693 0.761570i −0.439693 0.761570i
\(775\) 0 0
\(776\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.500000 0.866025i −0.500000 0.866025i
\(785\) 0 0
\(786\) 0.120615 0.120615
\(787\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0.673648 1.16679i 0.673648 1.16679i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.500000 0.866025i −0.500000 0.866025i
\(801\) −0.439693 0.761570i −0.439693 0.761570i
\(802\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\