Properties

Label 2880.3.l.b
Level $2880$
Weight $3$
Character orbit 2880.l
Analytic conductor $78.474$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2880.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(78.4743161358\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{5} + (\beta_{3} - 4) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{2} q^{5} + (\beta_{3} - 4) q^{7} + (6 \beta_{2} - \beta_1) q^{11} + ( - \beta_{3} - 2) q^{13} - 4 \beta_1 q^{17} + ( - 2 \beta_{3} - 8) q^{19} + ( - 6 \beta_{2} + 2 \beta_1) q^{23} - 5 q^{25} + (6 \beta_{2} - 8 \beta_1) q^{29} + (2 \beta_{3} + 2) q^{31} + ( - 4 \beta_{2} + 5 \beta_1) q^{35} + (3 \beta_{3} + 34) q^{37} + (24 \beta_{2} - 3 \beta_1) q^{41} + (2 \beta_{3} - 20) q^{43} + ( - 12 \beta_{2} - 14 \beta_1) q^{47} + ( - 8 \beta_{3} + 57) q^{49} + ( - 24 \beta_{2} - 10 \beta_1) q^{53} + (\beta_{3} - 30) q^{55} + ( - 18 \beta_{2} - 17 \beta_1) q^{59} + (6 \beta_{3} + 10) q^{61} + ( - 2 \beta_{2} - 5 \beta_1) q^{65} + 76 q^{67} + ( - 12 \beta_{2} + 12 \beta_1) q^{71} + ( - 6 \beta_{3} + 38) q^{73} + ( - 42 \beta_{2} + 34 \beta_1) q^{77} + (6 \beta_{3} + 50) q^{79} + (24 \beta_{2} - 2 \beta_1) q^{83} + 4 \beta_{3} q^{85} + (12 \beta_{2} + 21 \beta_1) q^{89} + (2 \beta_{3} - 82) q^{91} + ( - 8 \beta_{2} - 10 \beta_1) q^{95} + (2 \beta_{3} - 106) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 16 q^{7} - 8 q^{13} - 32 q^{19} - 20 q^{25} + 8 q^{31} + 136 q^{37} - 80 q^{43} + 228 q^{49} - 120 q^{55} + 40 q^{61} + 304 q^{67} + 152 q^{73} + 200 q^{79} - 328 q^{91} - 424 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 4x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{3} + 7\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} + 7\beta_1 ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1601.1
−1.58114 + 0.707107i
1.58114 0.707107i
−1.58114 0.707107i
1.58114 + 0.707107i
0 0 0 2.23607i 0 −13.4868 0 0 0
1601.2 0 0 0 2.23607i 0 5.48683 0 0 0
1601.3 0 0 0 2.23607i 0 −13.4868 0 0 0
1601.4 0 0 0 2.23607i 0 5.48683 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.3.l.b 4
3.b odd 2 1 inner 2880.3.l.b 4
4.b odd 2 1 2880.3.l.f 4
8.b even 2 1 180.3.g.a 4
8.d odd 2 1 720.3.l.c 4
12.b even 2 1 2880.3.l.f 4
24.f even 2 1 720.3.l.c 4
24.h odd 2 1 180.3.g.a 4
40.e odd 2 1 3600.3.l.n 4
40.f even 2 1 900.3.g.d 4
40.i odd 4 2 900.3.b.b 8
40.k even 4 2 3600.3.c.k 8
72.j odd 6 2 1620.3.o.f 8
72.n even 6 2 1620.3.o.f 8
120.i odd 2 1 900.3.g.d 4
120.m even 2 1 3600.3.l.n 4
120.q odd 4 2 3600.3.c.k 8
120.w even 4 2 900.3.b.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
180.3.g.a 4 8.b even 2 1
180.3.g.a 4 24.h odd 2 1
720.3.l.c 4 8.d odd 2 1
720.3.l.c 4 24.f even 2 1
900.3.b.b 8 40.i odd 4 2
900.3.b.b 8 120.w even 4 2
900.3.g.d 4 40.f even 2 1
900.3.g.d 4 120.i odd 2 1
1620.3.o.f 8 72.j odd 6 2
1620.3.o.f 8 72.n even 6 2
2880.3.l.b 4 1.a even 1 1 trivial
2880.3.l.b 4 3.b odd 2 1 inner
2880.3.l.f 4 4.b odd 2 1
2880.3.l.f 4 12.b even 2 1
3600.3.c.k 8 40.k even 4 2
3600.3.c.k 8 120.q odd 4 2
3600.3.l.n 4 40.e odd 2 1
3600.3.l.n 4 120.m even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2880, [\chi])\):

\( T_{7}^{2} + 8T_{7} - 74 \) Copy content Toggle raw display
\( T_{19}^{2} + 16T_{19} - 296 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 5)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 8 T - 74)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 396 T^{2} + 26244 \) Copy content Toggle raw display
$13$ \( (T^{2} + 4 T - 86)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 288)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 16 T - 296)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 504 T^{2} + 11664 \) Copy content Toggle raw display
$29$ \( T^{4} + 2664 T^{2} + 944784 \) Copy content Toggle raw display
$31$ \( (T^{2} - 4 T - 356)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 68 T + 346)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 6084 T^{2} + \cdots + 7387524 \) Copy content Toggle raw display
$43$ \( (T^{2} + 40 T + 40)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 8496 T^{2} + \cdots + 7884864 \) Copy content Toggle raw display
$53$ \( T^{4} + 9360 T^{2} + \cdots + 1166400 \) Copy content Toggle raw display
$59$ \( T^{4} + 13644 T^{2} + \cdots + 12830724 \) Copy content Toggle raw display
$61$ \( (T^{2} - 20 T - 3140)^{2} \) Copy content Toggle raw display
$67$ \( (T - 76)^{4} \) Copy content Toggle raw display
$71$ \( T^{4} + 6624 T^{2} + \cdots + 3504384 \) Copy content Toggle raw display
$73$ \( (T^{2} - 76 T - 1796)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 100 T - 740)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 5904 T^{2} + \cdots + 7884864 \) Copy content Toggle raw display
$89$ \( T^{4} + 17316 T^{2} + \cdots + 52099524 \) Copy content Toggle raw display
$97$ \( (T^{2} + 212 T + 10876)^{2} \) Copy content Toggle raw display
show more
show less