Properties

Label 2880.3.e.j
Level $2880$
Weight $3$
Character orbit 2880.e
Analytic conductor $78.474$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2880.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(78.4743161358\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.85100625.1
Defining polynomial: \(x^{8} - x^{7} - 2 x^{6} + x^{5} + 3 x^{4} + 2 x^{3} - 8 x^{2} - 8 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{19} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{2} q^{5} + ( -\beta_{1} + \beta_{6} ) q^{7} +O(q^{10})\) \( q -\beta_{2} q^{5} + ( -\beta_{1} + \beta_{6} ) q^{7} + ( -\beta_{1} + \beta_{7} ) q^{11} + ( -2 - 2 \beta_{2} - \beta_{5} ) q^{13} + ( 4 \beta_{2} + \beta_{3} ) q^{17} + ( -2 \beta_{4} + \beta_{7} ) q^{19} + ( -3 \beta_{1} + \beta_{4} + 2 \beta_{6} - 2 \beta_{7} ) q^{23} + 5 q^{25} + ( 8 + 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{5} ) q^{29} + ( -2 \beta_{1} - 4 \beta_{4} - 2 \beta_{6} - \beta_{7} ) q^{31} + ( 2 \beta_{1} + \beta_{4} - \beta_{7} ) q^{35} + ( 14 - 10 \beta_{2} - 2 \beta_{3} + \beta_{5} ) q^{37} + ( 2 + 2 \beta_{5} ) q^{41} + ( -6 \beta_{1} - 2 \beta_{4} - 3 \beta_{6} + 2 \beta_{7} ) q^{43} + ( -\beta_{1} + 5 \beta_{4} + 4 \beta_{6} + 2 \beta_{7} ) q^{47} + ( -7 - 16 \beta_{2} + 4 \beta_{3} ) q^{49} + ( 44 + 2 \beta_{2} + 2 \beta_{5} ) q^{53} + ( 3 \beta_{1} - 2 \beta_{6} + \beta_{7} ) q^{55} + ( -3 \beta_{1} + 2 \beta_{4} + 3 \beta_{7} ) q^{59} + ( 22 - 4 \beta_{2} + 4 \beta_{3} + 2 \beta_{5} ) q^{61} + ( 10 + 2 \beta_{2} + \beta_{3} - 2 \beta_{5} ) q^{65} + ( 4 \beta_{1} - 6 \beta_{4} - \beta_{6} - 4 \beta_{7} ) q^{67} + ( 8 \beta_{1} + 2 \beta_{4} ) q^{71} + ( -30 - 4 \beta_{2} - 4 \beta_{3} + 2 \beta_{5} ) q^{73} + ( -36 - 28 \beta_{2} + 2 \beta_{3} + 2 \beta_{5} ) q^{77} + ( -2 \beta_{1} - 8 \beta_{4} - 4 \beta_{6} + 9 \beta_{7} ) q^{79} + ( 2 \beta_{1} + 12 \beta_{4} + 5 \beta_{6} + 2 \beta_{7} ) q^{83} + ( -20 - 2 \beta_{3} - \beta_{5} ) q^{85} + ( -10 - 44 \beta_{2} - 2 \beta_{5} ) q^{89} + ( 6 \beta_{1} - 4 \beta_{4} - 10 \beta_{6} + 4 \beta_{7} ) q^{91} + ( \beta_{1} + 3 \beta_{4} - 5 \beta_{6} + 2 \beta_{7} ) q^{95} + ( 54 - 12 \beta_{2} - 6 \beta_{3} - 2 \beta_{5} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + O(q^{10}) \) \( 8q - 16q^{13} + 40q^{25} + 64q^{29} + 112q^{37} + 16q^{41} - 56q^{49} + 352q^{53} + 176q^{61} + 80q^{65} - 240q^{73} - 288q^{77} - 160q^{85} - 80q^{89} + 432q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - x^{7} - 2 x^{6} + x^{5} + 3 x^{4} + 2 x^{3} - 8 x^{2} - 8 x + 16\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -\nu^{7} + 3 \nu^{6} + 4 \nu^{5} + 7 \nu^{4} - 17 \nu^{3} - 24 \nu^{2} + 8 \nu + 24 \)\()/8\)
\(\beta_{2}\)\(=\)\((\)\( 3 \nu^{7} - \nu^{6} - 4 \nu^{5} - 5 \nu^{4} - 5 \nu^{3} + 16 \nu^{2} - 8 \nu - 24 \)\()/16\)
\(\beta_{3}\)\(=\)\((\)\( 3 \nu^{7} + 7 \nu^{6} - 12 \nu^{5} - 21 \nu^{4} + 3 \nu^{3} + 8 \nu^{2} + 40 \nu - 56 \)\()/8\)
\(\beta_{4}\)\(=\)\((\)\( 7 \nu^{7} + 3 \nu^{6} - 20 \nu^{5} - \nu^{4} + 15 \nu^{3} + 48 \nu^{2} - 8 \nu - 104 \)\()/8\)
\(\beta_{5}\)\(=\)\( -\nu^{7} + 3 \nu^{5} + \nu^{4} - 4 \nu^{3} - \nu^{2} + 10 \nu + 10 \)
\(\beta_{6}\)\(=\)\((\)\( 5 \nu^{7} + \nu^{6} - 4 \nu^{5} - 3 \nu^{4} + 5 \nu^{3} + 8 \nu^{2} - 8 \nu - 40 \)\()/4\)
\(\beta_{7}\)\(=\)\((\)\( -5 \nu^{7} - 5 \nu^{6} + 8 \nu^{5} + 11 \nu^{4} - 9 \nu^{3} - 36 \nu^{2} + 16 \nu + 72 \)\()/4\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{7} + \beta_{6} + \beta_{5} + \beta_{4} + \beta_{3} - 2 \beta_{2} - \beta_{1} + 2\)\()/16\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{7} - \beta_{6} + \beta_{5} + \beta_{4} - \beta_{3} + 2 \beta_{2} - \beta_{1} + 10\)\()/16\)
\(\nu^{3}\)\(=\)\((\)\(\beta_{6} - 8 \beta_{2} - 2 \beta_{1} + 4\)\()/8\)
\(\nu^{4}\)\(=\)\((\)\(\beta_{7} + \beta_{6} + \beta_{5} + 5 \beta_{4} - 3 \beta_{3} - 10 \beta_{2} + 3 \beta_{1} + 2\)\()/16\)
\(\nu^{5}\)\(=\)\((\)\(-3 \beta_{7} + 5 \beta_{6} + 3 \beta_{5} - 5 \beta_{4} - 3 \beta_{3} - 10 \beta_{2} - 3 \beta_{1} - 18\)\()/16\)
\(\nu^{6}\)\(=\)\((\)\(-4 \beta_{7} - \beta_{6} - 16 \beta_{2} + 6 \beta_{1} + 20\)\()/8\)
\(\nu^{7}\)\(=\)\((\)\(3 \beta_{7} + 19 \beta_{6} + 3 \beta_{5} - \beta_{4} - \beta_{3} + 2 \beta_{2} + \beta_{1} + 86\)\()/16\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2431.1
−1.34966 0.422403i
1.04064 0.957636i
1.04064 + 0.957636i
−1.34966 + 0.422403i
1.40906 0.120653i
−0.600040 1.28061i
−0.600040 + 1.28061i
1.40906 + 0.120653i
0 0 0 −2.23607 0 12.3959i 0 0 0
2431.2 0 0 0 −2.23607 0 5.46770i 0 0 0
2431.3 0 0 0 −2.23607 0 5.46770i 0 0 0
2431.4 0 0 0 −2.23607 0 12.3959i 0 0 0
2431.5 0 0 0 2.23607 0 6.33166i 0 0 0
2431.6 0 0 0 2.23607 0 0.596540i 0 0 0
2431.7 0 0 0 2.23607 0 0.596540i 0 0 0
2431.8 0 0 0 2.23607 0 6.33166i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2431.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.3.e.j 8
3.b odd 2 1 960.3.e.c 8
4.b odd 2 1 inner 2880.3.e.j 8
8.b even 2 1 180.3.c.b 8
8.d odd 2 1 180.3.c.b 8
12.b even 2 1 960.3.e.c 8
24.f even 2 1 60.3.c.a 8
24.h odd 2 1 60.3.c.a 8
40.e odd 2 1 900.3.c.u 8
40.f even 2 1 900.3.c.u 8
40.i odd 4 2 900.3.f.f 16
40.k even 4 2 900.3.f.f 16
120.i odd 2 1 300.3.c.d 8
120.m even 2 1 300.3.c.d 8
120.q odd 4 2 300.3.f.b 16
120.w even 4 2 300.3.f.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.3.c.a 8 24.f even 2 1
60.3.c.a 8 24.h odd 2 1
180.3.c.b 8 8.b even 2 1
180.3.c.b 8 8.d odd 2 1
300.3.c.d 8 120.i odd 2 1
300.3.c.d 8 120.m even 2 1
300.3.f.b 16 120.q odd 4 2
300.3.f.b 16 120.w even 4 2
900.3.c.u 8 40.e odd 2 1
900.3.c.u 8 40.f even 2 1
900.3.f.f 16 40.i odd 4 2
900.3.f.f 16 40.k even 4 2
960.3.e.c 8 3.b odd 2 1
960.3.e.c 8 12.b even 2 1
2880.3.e.j 8 1.a even 1 1 trivial
2880.3.e.j 8 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2880, [\chi])\):

\( T_{7}^{8} + 224 T_{7}^{6} + 12032 T_{7}^{4} + 188416 T_{7}^{2} + 65536 \)
\( T_{13}^{4} + 8 T_{13}^{3} - 472 T_{13}^{2} - 5792 T_{13} - 12464 \)
\( T_{17}^{4} - 424 T_{17}^{2} - 3840 T_{17} - 8816 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \)
$3$ \( T^{8} \)
$5$ \( ( -5 + T^{2} )^{4} \)
$7$ \( 65536 + 188416 T^{2} + 12032 T^{4} + 224 T^{6} + T^{8} \)
$11$ \( ( 10496 + 208 T^{2} + T^{4} )^{2} \)
$13$ \( ( -12464 - 5792 T - 472 T^{2} + 8 T^{3} + T^{4} )^{2} \)
$17$ \( ( -8816 - 3840 T - 424 T^{2} + T^{4} )^{2} \)
$19$ \( 6544162816 + 173686784 T^{2} + 925952 T^{4} + 1696 T^{6} + T^{8} \)
$23$ \( 101419319296 + 1884176384 T^{2} + 4397312 T^{4} + 3616 T^{6} + T^{8} \)
$29$ \( ( 1334416 + 34688 T - 2152 T^{2} - 32 T^{3} + T^{4} )^{2} \)
$31$ \( 59895709696 + 2731491328 T^{2} + 7432448 T^{4} + 5408 T^{6} + T^{8} \)
$37$ \( ( -244784 + 55136 T - 1528 T^{2} - 56 T^{3} + T^{4} )^{2} \)
$41$ \( ( 87184 + 7264 T - 1800 T^{2} - 8 T^{3} + T^{4} )^{2} \)
$43$ \( 33624411406336 + 62108155904 T^{2} + 40259072 T^{4} + 10816 T^{6} + T^{8} \)
$47$ \( 1056981385216 + 9701752832 T^{2} + 15726848 T^{4} + 8032 T^{6} + T^{8} \)
$53$ \( ( -478064 - 161344 T + 9752 T^{2} - 176 T^{3} + T^{4} )^{2} \)
$59$ \( 173909016576 + 2174459904 T^{2} + 6273792 T^{4} + 4896 T^{6} + T^{8} \)
$61$ \( ( -2142704 + 273568 T - 2536 T^{2} - 88 T^{3} + T^{4} )^{2} \)
$67$ \( 281086590976 + 15044755456 T^{2} + 57554432 T^{4} + 16064 T^{6} + T^{8} \)
$71$ \( 16079971680256 + 101402017792 T^{2} + 64237568 T^{4} + 13952 T^{6} + T^{8} \)
$73$ \( ( 4962064 - 325920 T - 1576 T^{2} + 120 T^{3} + T^{4} )^{2} \)
$79$ \( 3198642669223936 + 2420601929728 T^{2} + 550899968 T^{4} + 41888 T^{6} + T^{8} \)
$83$ \( 4284940379815936 + 2381453017088 T^{2} + 464465408 T^{4} + 36928 T^{6} + T^{8} \)
$89$ \( ( 70652944 - 757600 T - 20584 T^{2} + 40 T^{3} + T^{4} )^{2} \)
$97$ \( ( -59281776 + 1154592 T + 5880 T^{2} - 216 T^{3} + T^{4} )^{2} \)
show more
show less