# Properties

 Label 2880.2.w.m Level $2880$ Weight $2$ Character orbit 2880.w Analytic conductor $22.997$ Analytic rank $0$ Dimension $8$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2880 = 2^{6} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2880.w (of order $$4$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$22.9969157821$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(i)$$ Coefficient field: 8.0.40960000.1 Defining polynomial: $$x^{8} + 7 x^{4} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2^{6}$$ Twist minimal: no (minimal twist has level 360) Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{7}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{1} q^{5} + ( -1 + \beta_{2} + \beta_{3} ) q^{7} +O(q^{10})$$ $$q + \beta_{1} q^{5} + ( -1 + \beta_{2} + \beta_{3} ) q^{7} + ( \beta_{1} + \beta_{6} + \beta_{7} ) q^{11} + ( 2 + 2 \beta_{2} + \beta_{5} ) q^{13} + ( -2 \beta_{1} + \beta_{4} + \beta_{6} ) q^{17} + ( 2 \beta_{2} - \beta_{3} - \beta_{5} ) q^{19} + ( -2 \beta_{4} + 2 \beta_{6} ) q^{23} + 5 \beta_{2} q^{25} + ( \beta_{1} + 2 \beta_{4} - \beta_{7} ) q^{29} + ( 6 + \beta_{3} - \beta_{5} ) q^{31} + ( -\beta_{1} - 5 \beta_{4} + \beta_{7} ) q^{35} + \beta_{3} q^{37} -5 \beta_{6} q^{41} + ( 2 + 2 \beta_{2} - 2 \beta_{5} ) q^{43} + ( 2 \beta_{1} - \beta_{4} - \beta_{6} ) q^{47} + ( -5 \beta_{2} - 2 \beta_{3} - 2 \beta_{5} ) q^{49} + ( -5 + 5 \beta_{2} + \beta_{3} ) q^{55} + ( -\beta_{1} + 3 \beta_{4} + \beta_{7} ) q^{59} + ( -6 + \beta_{3} - \beta_{5} ) q^{61} + ( 2 \beta_{1} + 5 \beta_{6} + 2 \beta_{7} ) q^{65} + ( 6 - 6 \beta_{2} + 2 \beta_{3} ) q^{67} + ( 4 \beta_{1} + 4 \beta_{7} ) q^{71} + ( -5 - 5 \beta_{2} + 2 \beta_{5} ) q^{73} + ( -4 \beta_{1} - 6 \beta_{4} - 6 \beta_{6} ) q^{77} + ( -10 \beta_{2} - \beta_{3} - \beta_{5} ) q^{79} + ( 3 \beta_{4} - 3 \beta_{6} + 2 \beta_{7} ) q^{83} + ( -10 \beta_{2} + \beta_{3} + \beta_{5} ) q^{85} + ( 2 \beta_{1} - 5 \beta_{4} - 2 \beta_{7} ) q^{89} + ( -14 + 3 \beta_{3} - 3 \beta_{5} ) q^{91} + ( 5 \beta_{4} - 5 \beta_{6} + 2 \beta_{7} ) q^{95} + ( 1 - \beta_{2} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8q - 8q^{7} + O(q^{10})$$ $$8q - 8q^{7} + 16q^{13} + 48q^{31} + 16q^{43} - 40q^{55} - 48q^{61} + 48q^{67} - 40q^{73} - 112q^{91} + 8q^{97} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{8} + 7 x^{4} + 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$\nu^{5} + 11 \nu$$$$)/3$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{6} + 8 \nu^{2}$$$$)/3$$ $$\beta_{3}$$ $$=$$ $$($$$$-3 \nu^{6} + 2 \nu^{4} - 18 \nu^{2} + 7$$$$)/3$$ $$\beta_{4}$$ $$=$$ $$($$$$2 \nu^{7} - \nu^{5} + 13 \nu^{3} - 5 \nu$$$$)/3$$ $$\beta_{5}$$ $$=$$ $$($$$$-3 \nu^{6} - 2 \nu^{4} - 18 \nu^{2} - 7$$$$)/3$$ $$\beta_{6}$$ $$=$$ $$($$$$-2 \nu^{7} - \nu^{5} - 13 \nu^{3} - 5 \nu$$$$)/3$$ $$\beta_{7}$$ $$=$$ $$($$$$4 \nu^{7} + 29 \nu^{3}$$$$)/3$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{6} + \beta_{4} + 2 \beta_{1}$$$$)/4$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{5} + \beta_{3} + 6 \beta_{2}$$$$)/4$$ $$\nu^{3}$$ $$=$$ $$\beta_{7} + \beta_{6} - \beta_{4}$$ $$\nu^{4}$$ $$=$$ $$($$$$-3 \beta_{5} + 3 \beta_{3} - 14$$$$)/4$$ $$\nu^{5}$$ $$=$$ $$($$$$-11 \beta_{6} - 11 \beta_{4} - 10 \beta_{1}$$$$)/4$$ $$\nu^{6}$$ $$=$$ $$-2 \beta_{5} - 2 \beta_{3} - 9 \beta_{2}$$ $$\nu^{7}$$ $$=$$ $$($$$$-26 \beta_{7} - 29 \beta_{6} + 29 \beta_{4}$$$$)/4$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$641$$ $$901$$ $$2431$$ $$\chi(n)$$ $$-\beta_{2}$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2177.1
 −1.14412 + 1.14412i −0.437016 + 0.437016i 1.14412 − 1.14412i 0.437016 − 0.437016i −1.14412 − 1.14412i −0.437016 − 0.437016i 1.14412 + 1.14412i 0.437016 + 0.437016i
0 0 0 −1.58114 + 1.58114i 0 −3.23607 3.23607i 0 0 0
2177.2 0 0 0 −1.58114 + 1.58114i 0 1.23607 + 1.23607i 0 0 0
2177.3 0 0 0 1.58114 1.58114i 0 −3.23607 3.23607i 0 0 0
2177.4 0 0 0 1.58114 1.58114i 0 1.23607 + 1.23607i 0 0 0
2753.1 0 0 0 −1.58114 1.58114i 0 −3.23607 + 3.23607i 0 0 0
2753.2 0 0 0 −1.58114 1.58114i 0 1.23607 1.23607i 0 0 0
2753.3 0 0 0 1.58114 + 1.58114i 0 −3.23607 + 3.23607i 0 0 0
2753.4 0 0 0 1.58114 + 1.58114i 0 1.23607 1.23607i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 2753.4 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.w.m 8
3.b odd 2 1 inner 2880.2.w.m 8
4.b odd 2 1 2880.2.w.o 8
5.c odd 4 1 inner 2880.2.w.m 8
8.b even 2 1 360.2.s.b 8
8.d odd 2 1 720.2.w.e 8
12.b even 2 1 2880.2.w.o 8
15.e even 4 1 inner 2880.2.w.m 8
20.e even 4 1 2880.2.w.o 8
24.f even 2 1 720.2.w.e 8
24.h odd 2 1 360.2.s.b 8
40.e odd 2 1 3600.2.w.j 8
40.f even 2 1 1800.2.s.e 8
40.i odd 4 1 360.2.s.b 8
40.i odd 4 1 1800.2.s.e 8
40.k even 4 1 720.2.w.e 8
40.k even 4 1 3600.2.w.j 8
60.l odd 4 1 2880.2.w.o 8
120.i odd 2 1 1800.2.s.e 8
120.m even 2 1 3600.2.w.j 8
120.q odd 4 1 720.2.w.e 8
120.q odd 4 1 3600.2.w.j 8
120.w even 4 1 360.2.s.b 8
120.w even 4 1 1800.2.s.e 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.s.b 8 8.b even 2 1
360.2.s.b 8 24.h odd 2 1
360.2.s.b 8 40.i odd 4 1
360.2.s.b 8 120.w even 4 1
720.2.w.e 8 8.d odd 2 1
720.2.w.e 8 24.f even 2 1
720.2.w.e 8 40.k even 4 1
720.2.w.e 8 120.q odd 4 1
1800.2.s.e 8 40.f even 2 1
1800.2.s.e 8 40.i odd 4 1
1800.2.s.e 8 120.i odd 2 1
1800.2.s.e 8 120.w even 4 1
2880.2.w.m 8 1.a even 1 1 trivial
2880.2.w.m 8 3.b odd 2 1 inner
2880.2.w.m 8 5.c odd 4 1 inner
2880.2.w.m 8 15.e even 4 1 inner
2880.2.w.o 8 4.b odd 2 1
2880.2.w.o 8 12.b even 2 1
2880.2.w.o 8 20.e even 4 1
2880.2.w.o 8 60.l odd 4 1
3600.2.w.j 8 40.e odd 2 1
3600.2.w.j 8 40.k even 4 1
3600.2.w.j 8 120.m even 2 1
3600.2.w.j 8 120.q odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2880, [\chi])$$:

 $$T_{7}^{4} + 4 T_{7}^{3} + 8 T_{7}^{2} - 32 T_{7} + 64$$ $$T_{11}^{4} + 24 T_{11}^{2} + 64$$ $$T_{13}^{4} - 8 T_{13}^{3} + 32 T_{13}^{2} + 16 T_{13} + 4$$ $$T_{31}^{2} - 12 T_{31} + 16$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{8}$$
$3$ $$T^{8}$$
$5$ $$( 25 + T^{4} )^{2}$$
$7$ $$( 64 - 32 T + 8 T^{2} + 4 T^{3} + T^{4} )^{2}$$
$11$ $$( 64 + 24 T^{2} + T^{4} )^{2}$$
$13$ $$( 4 + 16 T + 32 T^{2} - 8 T^{3} + T^{4} )^{2}$$
$17$ $$65536 + 1792 T^{4} + T^{8}$$
$19$ $$( 256 + 48 T^{2} + T^{4} )^{2}$$
$23$ $$( 256 + T^{4} )^{2}$$
$29$ $$( 4 - 36 T^{2} + T^{4} )^{2}$$
$31$ $$( 16 - 12 T + T^{2} )^{4}$$
$37$ $$( 100 + T^{4} )^{2}$$
$41$ $$( 50 + T^{2} )^{4}$$
$43$ $$( 1024 + 256 T + 32 T^{2} - 8 T^{3} + T^{4} )^{2}$$
$47$ $$65536 + 1792 T^{4} + T^{8}$$
$53$ $$T^{8}$$
$59$ $$( 64 - 56 T^{2} + T^{4} )^{2}$$
$61$ $$( 16 + 12 T + T^{2} )^{4}$$
$67$ $$( 1024 - 768 T + 288 T^{2} - 24 T^{3} + T^{4} )^{2}$$
$71$ $$( 160 + T^{2} )^{4}$$
$73$ $$( 100 + 200 T + 200 T^{2} + 20 T^{3} + T^{4} )^{2}$$
$79$ $$( 6400 + 240 T^{2} + T^{4} )^{2}$$
$83$ $$65536 + 12032 T^{4} + T^{8}$$
$89$ $$( 100 - 180 T^{2} + T^{4} )^{2}$$
$97$ $$( 2 - 2 T + T^{2} )^{4}$$