Properties

Label 2880.2.t.b
Level $2880$
Weight $2$
Character orbit 2880.t
Analytic conductor $22.997$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.t (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(22.9969157821\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.18939904.2
Defining polynomial: \(x^{8} - 4 x^{7} + 14 x^{6} - 28 x^{5} + 43 x^{4} - 44 x^{3} + 30 x^{2} - 12 x + 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{5} + ( \beta_{2} + \beta_{3} ) q^{7} +O(q^{10})\) \( q + \beta_{3} q^{5} + ( \beta_{2} + \beta_{3} ) q^{7} + ( 1 + \beta_{1} - \beta_{3} - \beta_{4} + \beta_{5} + \beta_{7} ) q^{11} + ( 1 - \beta_{2} + \beta_{4} - \beta_{6} ) q^{13} + ( -1 + \beta_{1} - \beta_{2} + \beta_{3} + \beta_{5} - \beta_{6} ) q^{17} + ( -1 - \beta_{1} + 2 \beta_{2} - \beta_{4} + \beta_{7} ) q^{19} + ( -2 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + 2 \beta_{7} ) q^{23} -\beta_{4} q^{25} + ( -3 + \beta_{1} - 2 \beta_{2} - 3 \beta_{4} - \beta_{7} ) q^{29} + ( -1 - \beta_{1} + \beta_{5} - \beta_{6} ) q^{31} + ( -1 - \beta_{4} ) q^{35} + ( -1 - 2 \beta_{1} - \beta_{3} + \beta_{4} - \beta_{5} - 2 \beta_{7} ) q^{37} + ( -4 \beta_{2} - 4 \beta_{3} + 4 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{7} ) q^{41} + ( -4 \beta_{3} + 2 \beta_{5} ) q^{43} + ( -4 \beta_{1} + \beta_{2} - \beta_{3} - 3 \beta_{5} + 3 \beta_{6} ) q^{47} + 5 q^{49} + ( 2 \beta_{1} - 2 \beta_{5} + 2 \beta_{7} ) q^{53} + ( \beta_{2} + \beta_{3} + \beta_{4} - \beta_{5} - \beta_{6} - \beta_{7} ) q^{55} + ( 1 + 3 \beta_{1} + 3 \beta_{3} - \beta_{4} + 5 \beta_{5} + 3 \beta_{7} ) q^{59} + ( -2 + \beta_{1} - 2 \beta_{2} - 2 \beta_{4} - 4 \beta_{6} - \beta_{7} ) q^{61} + ( 1 - \beta_{1} - \beta_{2} + \beta_{3} ) q^{65} + ( -2 \beta_{1} + 2 \beta_{7} ) q^{67} + ( 3 \beta_{2} + 3 \beta_{3} - 6 \beta_{4} - \beta_{5} - \beta_{6} - 2 \beta_{7} ) q^{71} + ( 3 \beta_{2} + 3 \beta_{3} - 4 \beta_{4} + \beta_{5} + \beta_{6} ) q^{73} + ( 1 + \beta_{1} + 2 \beta_{2} + \beta_{4} - 2 \beta_{6} - \beta_{7} ) q^{77} + ( 5 + \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + \beta_{5} - \beta_{6} ) q^{79} + ( 4 + 2 \beta_{1} + 4 \beta_{4} - 4 \beta_{6} - 2 \beta_{7} ) q^{83} + ( 1 - \beta_{1} - \beta_{3} - \beta_{4} - \beta_{5} - \beta_{7} ) q^{85} + ( -6 \beta_{2} - 6 \beta_{3} - 6 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} ) q^{89} + ( 1 - \beta_{1} + 2 \beta_{3} - \beta_{4} - \beta_{7} ) q^{91} + ( -2 + \beta_{2} - \beta_{3} + \beta_{5} - \beta_{6} ) q^{95} + ( -6 - 2 \beta_{1} + \beta_{2} - \beta_{3} + \beta_{5} - \beta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + O(q^{10}) \) \( 8q + 8q^{11} + 8q^{13} - 8q^{17} - 8q^{19} - 24q^{29} - 8q^{31} - 8q^{35} - 8q^{37} + 40q^{49} + 8q^{59} - 16q^{61} + 8q^{65} + 8q^{77} + 40q^{79} + 32q^{83} + 8q^{85} + 8q^{91} - 16q^{95} - 48q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 4 x^{7} + 14 x^{6} - 28 x^{5} + 43 x^{4} - 44 x^{3} + 30 x^{2} - 12 x + 2\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( -\nu^{6} + 3 \nu^{5} - 11 \nu^{4} + 17 \nu^{3} - 24 \nu^{2} + 16 \nu - 5 \)
\(\beta_{2}\)\(=\)\( 5 \nu^{7} - 17 \nu^{6} + 60 \nu^{5} - 105 \nu^{4} + 155 \nu^{3} - 133 \nu^{2} + 77 \nu - 19 \)
\(\beta_{3}\)\(=\)\( 5 \nu^{7} - 18 \nu^{6} + 63 \nu^{5} - 115 \nu^{4} + 170 \nu^{3} - 152 \nu^{2} + 89 \nu - 23 \)
\(\beta_{4}\)\(=\)\( 8 \nu^{7} - 28 \nu^{6} + 98 \nu^{5} - 175 \nu^{4} + 256 \nu^{3} - 223 \nu^{2} + 126 \nu - 31 \)
\(\beta_{5}\)\(=\)\( 9 \nu^{7} - 31 \nu^{6} + 108 \nu^{5} - 190 \nu^{4} + 275 \nu^{3} - 236 \nu^{2} + 131 \nu - 33 \)
\(\beta_{6}\)\(=\)\( 9 \nu^{7} - 32 \nu^{6} + 111 \nu^{5} - 200 \nu^{4} + 290 \nu^{3} - 253 \nu^{2} + 141 \nu - 33 \)
\(\beta_{7}\)\(=\)\( 10 \nu^{7} - 35 \nu^{6} + 123 \nu^{5} - 220 \nu^{4} + 325 \nu^{3} - 285 \nu^{2} + 168 \nu - 43 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{7} - \beta_{3} - \beta_{2} + 1\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{7} + \beta_{6} - \beta_{5} - 2 \beta_{3} - 3\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(-2 \beta_{7} + 2 \beta_{6} - \beta_{5} - 3 \beta_{4} + 2 \beta_{3} + 5 \beta_{2} - 5\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(-5 \beta_{7} - \beta_{6} + 3 \beta_{5} - 6 \beta_{4} + 12 \beta_{3} + 4 \beta_{2} - 2 \beta_{1} + 7\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(3 \beta_{7} - 10 \beta_{6} + 5 \beta_{5} + 10 \beta_{4} + 6 \beta_{3} - 19 \beta_{2} - 5 \beta_{1} + 26\)\()/2\)
\(\nu^{6}\)\(=\)\((\)\(22 \beta_{7} - 9 \beta_{6} - 11 \beta_{5} + 45 \beta_{4} - 48 \beta_{3} - 32 \beta_{2} + 5 \beta_{1} - 6\)\()/2\)
\(\nu^{7}\)\(=\)\((\)\(7 \beta_{7} + 33 \beta_{6} - 30 \beta_{5} - 83 \beta_{3} + 64 \beta_{2} + 35 \beta_{1} - 118\)\()/2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
721.1
0.500000 + 0.0297061i
0.500000 1.44392i
0.500000 + 2.10607i
0.500000 0.691860i
0.500000 0.0297061i
0.500000 + 1.44392i
0.500000 2.10607i
0.500000 + 0.691860i
0 0 0 −0.707107 + 0.707107i 0 1.41421i 0 0 0
721.2 0 0 0 −0.707107 + 0.707107i 0 1.41421i 0 0 0
721.3 0 0 0 0.707107 0.707107i 0 1.41421i 0 0 0
721.4 0 0 0 0.707107 0.707107i 0 1.41421i 0 0 0
2161.1 0 0 0 −0.707107 0.707107i 0 1.41421i 0 0 0
2161.2 0 0 0 −0.707107 0.707107i 0 1.41421i 0 0 0
2161.3 0 0 0 0.707107 + 0.707107i 0 1.41421i 0 0 0
2161.4 0 0 0 0.707107 + 0.707107i 0 1.41421i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2161.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
16.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.t.b 8
3.b odd 2 1 960.2.s.b 8
4.b odd 2 1 720.2.t.b 8
12.b even 2 1 240.2.s.b 8
16.e even 4 1 inner 2880.2.t.b 8
16.f odd 4 1 720.2.t.b 8
24.f even 2 1 1920.2.s.c 8
24.h odd 2 1 1920.2.s.d 8
48.i odd 4 1 960.2.s.b 8
48.i odd 4 1 1920.2.s.d 8
48.k even 4 1 240.2.s.b 8
48.k even 4 1 1920.2.s.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
240.2.s.b 8 12.b even 2 1
240.2.s.b 8 48.k even 4 1
720.2.t.b 8 4.b odd 2 1
720.2.t.b 8 16.f odd 4 1
960.2.s.b 8 3.b odd 2 1
960.2.s.b 8 48.i odd 4 1
1920.2.s.c 8 24.f even 2 1
1920.2.s.c 8 48.k even 4 1
1920.2.s.d 8 24.h odd 2 1
1920.2.s.d 8 48.i odd 4 1
2880.2.t.b 8 1.a even 1 1 trivial
2880.2.t.b 8 16.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 2 \) acting on \(S_{2}^{\mathrm{new}}(2880, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \)
$3$ \( T^{8} \)
$5$ \( ( 1 + T^{4} )^{2} \)
$7$ \( ( 2 + T^{2} )^{4} \)
$11$ \( 64 + 128 T + 128 T^{2} + 16 T^{5} + 32 T^{6} - 8 T^{7} + T^{8} \)
$13$ \( 16 + 64 T + 128 T^{2} + 32 T^{3} - 8 T^{4} - 16 T^{5} + 32 T^{6} - 8 T^{7} + T^{8} \)
$17$ \( ( 8 - 12 T^{2} + 4 T^{3} + T^{4} )^{2} \)
$19$ \( 256 - 512 T + 512 T^{2} + 384 T^{3} + 224 T^{4} - 96 T^{5} + 32 T^{6} + 8 T^{7} + T^{8} \)
$23$ \( 200704 + 73728 T^{2} + 5248 T^{4} + 128 T^{6} + T^{8} \)
$29$ \( 135424 - 11776 T + 512 T^{2} + 11392 T^{3} + 7136 T^{4} + 1888 T^{5} + 288 T^{6} + 24 T^{7} + T^{8} \)
$31$ \( ( -28 - 88 T - 40 T^{2} + 4 T^{3} + T^{4} )^{2} \)
$37$ \( 414736 - 154560 T + 28800 T^{2} + 6368 T^{3} + 1016 T^{4} - 144 T^{5} + 32 T^{6} + 8 T^{7} + T^{8} \)
$41$ \( 17707264 + 1276672 T^{2} + 31072 T^{4} + 304 T^{6} + T^{8} \)
$43$ \( 12544 - 28672 T + 32768 T^{2} - 18432 T^{3} + 5408 T^{4} - 256 T^{5} + T^{8} \)
$47$ \( ( -224 - 416 T - 152 T^{2} + T^{4} )^{2} \)
$53$ \( 73984 + 33312 T^{4} + T^{8} \)
$59$ \( 7529536 - 6453888 T + 2765952 T^{2} - 482944 T^{3} + 43904 T^{4} - 784 T^{5} + 32 T^{6} - 8 T^{7} + T^{8} \)
$61$ \( 4343056 - 1667200 T + 320000 T^{2} + 27456 T^{3} + 1608 T^{4} - 416 T^{5} + 128 T^{6} + 16 T^{7} + T^{8} \)
$67$ \( 1183744 + 4224 T^{4} + T^{8} \)
$71$ \( 5161984 + 699904 T^{2} + 23168 T^{4} + 272 T^{6} + T^{8} \)
$73$ \( 50176 + 27136 T^{2} + 4224 T^{4} + 176 T^{6} + T^{8} \)
$79$ \( ( 164 - 264 T + 120 T^{2} - 20 T^{3} + T^{4} )^{2} \)
$83$ \( 2166784 - 1130496 T + 294912 T^{2} + 14336 T^{3} + 9344 T^{4} - 3328 T^{5} + 512 T^{6} - 32 T^{7} + T^{8} \)
$89$ \( 118026496 + 6544640 T^{2} + 102752 T^{4} + 592 T^{6} + T^{8} \)
$97$ \( ( -736 - 32 T + 120 T^{2} + 24 T^{3} + T^{4} )^{2} \)
show more
show less