Properties

Label 2880.2.t.a
Level $2880$
Weight $2$
Character orbit 2880.t
Analytic conductor $22.997$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.t (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(22.9969157821\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{8} q^{5} + ( 2 \zeta_{8} + 2 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{7} +O(q^{10})\) \( q -\zeta_{8} q^{5} + ( 2 \zeta_{8} + 2 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{7} + 2 \zeta_{8} q^{11} + ( -2 + 2 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{13} + ( -4 - \zeta_{8} + \zeta_{8}^{3} ) q^{17} + ( -1 + \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{19} + ( -\zeta_{8} - 4 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{23} + \zeta_{8}^{2} q^{25} + ( 2 - 2 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{29} + ( 2 - 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{31} + ( 2 - 2 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{35} + ( 6 - 2 \zeta_{8} + 6 \zeta_{8}^{2} ) q^{37} + ( -2 \zeta_{8} - 2 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{41} + ( 2 - 8 \zeta_{8} + 2 \zeta_{8}^{2} ) q^{43} + ( -5 \zeta_{8} + 5 \zeta_{8}^{3} ) q^{47} + ( -5 - 8 \zeta_{8} + 8 \zeta_{8}^{3} ) q^{49} + ( 4 + 4 \zeta_{8}^{2} ) q^{53} -2 \zeta_{8}^{2} q^{55} + ( -6 - 2 \zeta_{8} - 6 \zeta_{8}^{2} ) q^{59} + ( 1 - \zeta_{8}^{2} - 12 \zeta_{8}^{3} ) q^{61} + ( -2 + 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{65} + ( 2 - 2 \zeta_{8}^{2} - 8 \zeta_{8}^{3} ) q^{67} -8 \zeta_{8}^{2} q^{71} + ( -2 \zeta_{8} + 6 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{73} + ( -4 + 4 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{77} + ( 8 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{79} + ( 4 - 4 \zeta_{8}^{2} + 10 \zeta_{8}^{3} ) q^{83} + ( 1 + 4 \zeta_{8} + \zeta_{8}^{2} ) q^{85} + ( -4 \zeta_{8} + 2 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{89} -4 \zeta_{8} q^{91} + ( 4 + \zeta_{8} - \zeta_{8}^{3} ) q^{95} + ( -2 - 8 \zeta_{8} + 8 \zeta_{8}^{3} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + O(q^{10}) \) \( 4q - 8q^{13} - 16q^{17} - 4q^{19} + 8q^{29} + 8q^{31} + 8q^{35} + 24q^{37} + 8q^{43} - 20q^{49} + 16q^{53} - 24q^{59} + 4q^{61} - 8q^{65} + 8q^{67} - 16q^{77} + 32q^{79} + 16q^{83} + 4q^{85} + 16q^{95} - 8q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(1\) \(1\) \(\zeta_{8}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
721.1
0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i
0 0 0 −0.707107 + 0.707107i 0 4.82843i 0 0 0
721.2 0 0 0 0.707107 0.707107i 0 0.828427i 0 0 0
2161.1 0 0 0 −0.707107 0.707107i 0 4.82843i 0 0 0
2161.2 0 0 0 0.707107 + 0.707107i 0 0.828427i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
16.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.t.a 4
3.b odd 2 1 960.2.s.a 4
4.b odd 2 1 720.2.t.a 4
12.b even 2 1 240.2.s.a 4
16.e even 4 1 inner 2880.2.t.a 4
16.f odd 4 1 720.2.t.a 4
24.f even 2 1 1920.2.s.a 4
24.h odd 2 1 1920.2.s.b 4
48.i odd 4 1 960.2.s.a 4
48.i odd 4 1 1920.2.s.b 4
48.k even 4 1 240.2.s.a 4
48.k even 4 1 1920.2.s.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
240.2.s.a 4 12.b even 2 1
240.2.s.a 4 48.k even 4 1
720.2.t.a 4 4.b odd 2 1
720.2.t.a 4 16.f odd 4 1
960.2.s.a 4 3.b odd 2 1
960.2.s.a 4 48.i odd 4 1
1920.2.s.a 4 24.f even 2 1
1920.2.s.a 4 48.k even 4 1
1920.2.s.b 4 24.h odd 2 1
1920.2.s.b 4 48.i odd 4 1
2880.2.t.a 4 1.a even 1 1 trivial
2880.2.t.a 4 16.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 24 T_{7}^{2} + 16 \) acting on \(S_{2}^{\mathrm{new}}(2880, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( 1 + T^{4} \)
$7$ \( 16 + 24 T^{2} + T^{4} \)
$11$ \( 16 + T^{4} \)
$13$ \( 16 + 32 T + 32 T^{2} + 8 T^{3} + T^{4} \)
$17$ \( ( 14 + 8 T + T^{2} )^{2} \)
$19$ \( 196 - 56 T + 8 T^{2} + 4 T^{3} + T^{4} \)
$23$ \( 196 + 36 T^{2} + T^{4} \)
$29$ \( 16 - 32 T + 32 T^{2} - 8 T^{3} + T^{4} \)
$31$ \( ( -28 - 4 T + T^{2} )^{2} \)
$37$ \( 4624 - 1632 T + 288 T^{2} - 24 T^{3} + T^{4} \)
$41$ \( 16 + 24 T^{2} + T^{4} \)
$43$ \( 3136 + 448 T + 32 T^{2} - 8 T^{3} + T^{4} \)
$47$ \( ( -50 + T^{2} )^{2} \)
$53$ \( ( 32 - 8 T + T^{2} )^{2} \)
$59$ \( 4624 + 1632 T + 288 T^{2} + 24 T^{3} + T^{4} \)
$61$ \( 20164 + 568 T + 8 T^{2} - 4 T^{3} + T^{4} \)
$67$ \( 3136 + 448 T + 32 T^{2} - 8 T^{3} + T^{4} \)
$71$ \( ( 64 + T^{2} )^{2} \)
$73$ \( 784 + 88 T^{2} + T^{4} \)
$79$ \( ( 32 - 16 T + T^{2} )^{2} \)
$83$ \( 4624 + 1088 T + 128 T^{2} - 16 T^{3} + T^{4} \)
$89$ \( 784 + 72 T^{2} + T^{4} \)
$97$ \( ( -124 + 4 T + T^{2} )^{2} \)
show more
show less