Properties

Label 2880.2.k.h
Level $2880$
Weight $2$
Character orbit 2880.k
Analytic conductor $22.997$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(22.9969157821\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12}^{3} q^{5} +O(q^{10})\) \( q + \zeta_{12}^{3} q^{5} + ( 2 - 4 \zeta_{12}^{2} ) q^{11} + ( 2 - 4 \zeta_{12}^{2} ) q^{13} + ( 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{17} + 4 \zeta_{12}^{3} q^{19} - q^{25} -6 \zeta_{12}^{3} q^{29} + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{31} + ( -2 + 4 \zeta_{12}^{2} ) q^{37} + ( 8 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{41} -4 \zeta_{12}^{3} q^{43} -12 q^{47} -7 q^{49} -6 \zeta_{12}^{3} q^{53} + ( 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{55} + ( 6 - 12 \zeta_{12}^{2} ) q^{59} + ( 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{65} -4 \zeta_{12}^{3} q^{67} + 2 q^{73} + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{79} + ( 8 - 16 \zeta_{12}^{2} ) q^{83} + ( -2 + 4 \zeta_{12}^{2} ) q^{85} + ( 8 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{89} -4 q^{95} + 10 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + O(q^{10}) \) \( 4q - 4q^{25} - 48q^{47} - 28q^{49} + 8q^{73} - 16q^{95} + 40q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1441.1
−0.866025 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0 0 0 1.00000i 0 0 0 0 0
1441.2 0 0 0 1.00000i 0 0 0 0 0
1441.3 0 0 0 1.00000i 0 0 0 0 0
1441.4 0 0 0 1.00000i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.k.h 4
3.b odd 2 1 2880.2.k.i yes 4
4.b odd 2 1 2880.2.k.i yes 4
8.b even 2 1 inner 2880.2.k.h 4
8.d odd 2 1 2880.2.k.i yes 4
12.b even 2 1 inner 2880.2.k.h 4
24.f even 2 1 inner 2880.2.k.h 4
24.h odd 2 1 2880.2.k.i yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2880.2.k.h 4 1.a even 1 1 trivial
2880.2.k.h 4 8.b even 2 1 inner
2880.2.k.h 4 12.b even 2 1 inner
2880.2.k.h 4 24.f even 2 1 inner
2880.2.k.i yes 4 3.b odd 2 1
2880.2.k.i yes 4 4.b odd 2 1
2880.2.k.i yes 4 8.d odd 2 1
2880.2.k.i yes 4 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2880, [\chi])\):

\( T_{7} \)
\( T_{11}^{2} + 12 \)
\( T_{23} \)
\( T_{47} + 12 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( ( 1 + T^{2} )^{2} \)
$7$ \( T^{4} \)
$11$ \( ( 12 + T^{2} )^{2} \)
$13$ \( ( 12 + T^{2} )^{2} \)
$17$ \( ( -12 + T^{2} )^{2} \)
$19$ \( ( 16 + T^{2} )^{2} \)
$23$ \( T^{4} \)
$29$ \( ( 36 + T^{2} )^{2} \)
$31$ \( ( -12 + T^{2} )^{2} \)
$37$ \( ( 12 + T^{2} )^{2} \)
$41$ \( ( -48 + T^{2} )^{2} \)
$43$ \( ( 16 + T^{2} )^{2} \)
$47$ \( ( 12 + T )^{4} \)
$53$ \( ( 36 + T^{2} )^{2} \)
$59$ \( ( 108 + T^{2} )^{2} \)
$61$ \( T^{4} \)
$67$ \( ( 16 + T^{2} )^{2} \)
$71$ \( T^{4} \)
$73$ \( ( -2 + T )^{4} \)
$79$ \( ( -12 + T^{2} )^{2} \)
$83$ \( ( 192 + T^{2} )^{2} \)
$89$ \( ( -48 + T^{2} )^{2} \)
$97$ \( ( -10 + T )^{4} \)
show more
show less