Properties

Label 2880.2.k.c
Level $2880$
Weight $2$
Character orbit 2880.k
Analytic conductor $22.997$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(22.9969157821\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 960)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{5} +O(q^{10})\) \( q + i q^{5} -6 i q^{13} + 2 i q^{19} + 6 q^{23} - q^{25} + 6 i q^{29} -6 i q^{37} -6 q^{41} -8 i q^{43} + 6 q^{47} -7 q^{49} -6 i q^{53} -12 i q^{59} -12 i q^{61} + 6 q^{65} + 4 i q^{67} + 12 q^{71} + 2 q^{73} + 12 i q^{83} + 6 q^{89} -2 q^{95} + 10 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + O(q^{10}) \) \( 2q + 12q^{23} - 2q^{25} - 12q^{41} + 12q^{47} - 14q^{49} + 12q^{65} + 24q^{71} + 4q^{73} + 12q^{89} - 4q^{95} + 20q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1441.1
1.00000i
1.00000i
0 0 0 1.00000i 0 0 0 0 0
1441.2 0 0 0 1.00000i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.k.c 2
3.b odd 2 1 960.2.k.b 2
4.b odd 2 1 2880.2.k.b 2
8.b even 2 1 inner 2880.2.k.c 2
8.d odd 2 1 2880.2.k.b 2
12.b even 2 1 960.2.k.c yes 2
15.d odd 2 1 4800.2.k.e 2
15.e even 4 1 4800.2.d.a 2
15.e even 4 1 4800.2.d.h 2
24.f even 2 1 960.2.k.c yes 2
24.h odd 2 1 960.2.k.b 2
48.i odd 4 1 3840.2.a.j 1
48.i odd 4 1 3840.2.a.q 1
48.k even 4 1 3840.2.a.e 1
48.k even 4 1 3840.2.a.z 1
60.h even 2 1 4800.2.k.d 2
60.l odd 4 1 4800.2.d.d 2
60.l odd 4 1 4800.2.d.e 2
120.i odd 2 1 4800.2.k.e 2
120.m even 2 1 4800.2.k.d 2
120.q odd 4 1 4800.2.d.d 2
120.q odd 4 1 4800.2.d.e 2
120.w even 4 1 4800.2.d.a 2
120.w even 4 1 4800.2.d.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
960.2.k.b 2 3.b odd 2 1
960.2.k.b 2 24.h odd 2 1
960.2.k.c yes 2 12.b even 2 1
960.2.k.c yes 2 24.f even 2 1
2880.2.k.b 2 4.b odd 2 1
2880.2.k.b 2 8.d odd 2 1
2880.2.k.c 2 1.a even 1 1 trivial
2880.2.k.c 2 8.b even 2 1 inner
3840.2.a.e 1 48.k even 4 1
3840.2.a.j 1 48.i odd 4 1
3840.2.a.q 1 48.i odd 4 1
3840.2.a.z 1 48.k even 4 1
4800.2.d.a 2 15.e even 4 1
4800.2.d.a 2 120.w even 4 1
4800.2.d.d 2 60.l odd 4 1
4800.2.d.d 2 120.q odd 4 1
4800.2.d.e 2 60.l odd 4 1
4800.2.d.e 2 120.q odd 4 1
4800.2.d.h 2 15.e even 4 1
4800.2.d.h 2 120.w even 4 1
4800.2.k.d 2 60.h even 2 1
4800.2.k.d 2 120.m even 2 1
4800.2.k.e 2 15.d odd 2 1
4800.2.k.e 2 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2880, [\chi])\):

\( T_{7} \)
\( T_{11} \)
\( T_{23} - 6 \)
\( T_{47} - 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( 1 + T^{2} \)
$7$ \( T^{2} \)
$11$ \( T^{2} \)
$13$ \( 36 + T^{2} \)
$17$ \( T^{2} \)
$19$ \( 4 + T^{2} \)
$23$ \( ( -6 + T )^{2} \)
$29$ \( 36 + T^{2} \)
$31$ \( T^{2} \)
$37$ \( 36 + T^{2} \)
$41$ \( ( 6 + T )^{2} \)
$43$ \( 64 + T^{2} \)
$47$ \( ( -6 + T )^{2} \)
$53$ \( 36 + T^{2} \)
$59$ \( 144 + T^{2} \)
$61$ \( 144 + T^{2} \)
$67$ \( 16 + T^{2} \)
$71$ \( ( -12 + T )^{2} \)
$73$ \( ( -2 + T )^{2} \)
$79$ \( T^{2} \)
$83$ \( 144 + T^{2} \)
$89$ \( ( -6 + T )^{2} \)
$97$ \( ( -10 + T )^{2} \)
show more
show less