# Properties

 Label 2880.2.h.c Level $2880$ Weight $2$ Character orbit 2880.h Analytic conductor $22.997$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2880 = 2^{6} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2880.h (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$22.9969157821$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{8})$$ Defining polynomial: $$x^{4} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 1440) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{8}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \zeta_{8}^{2} q^{5} + ( -\zeta_{8} + 2 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{7} +O(q^{10})$$ $$q + \zeta_{8}^{2} q^{5} + ( -\zeta_{8} + 2 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{7} + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{11} + ( 2 - 3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{13} + ( 2 \zeta_{8} - 4 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{17} + ( -4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{19} + ( 6 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{23} - q^{25} + 2 \zeta_{8}^{2} q^{29} + ( 2 \zeta_{8} - 6 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{31} + ( -2 + \zeta_{8} - \zeta_{8}^{3} ) q^{35} + ( -6 + \zeta_{8} - \zeta_{8}^{3} ) q^{37} + ( -3 \zeta_{8} - 4 \zeta_{8}^{2} - 3 \zeta_{8}^{3} ) q^{41} + ( -2 \zeta_{8} - 4 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{43} + 8 q^{47} + ( 1 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{49} + ( 2 \zeta_{8} + 4 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{53} + ( -\zeta_{8} - \zeta_{8}^{3} ) q^{55} + ( -4 - \zeta_{8} + \zeta_{8}^{3} ) q^{59} + ( 6 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{61} + ( -3 \zeta_{8} + 2 \zeta_{8}^{2} - 3 \zeta_{8}^{3} ) q^{65} + ( -8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{67} + ( 8 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{71} + ( -2 + 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{73} + ( -2 \zeta_{8} + 2 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{77} + ( -6 \zeta_{8} + 2 \zeta_{8}^{2} - 6 \zeta_{8}^{3} ) q^{79} + ( 4 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{83} + ( 4 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{85} + ( 5 \zeta_{8} - 8 \zeta_{8}^{2} + 5 \zeta_{8}^{3} ) q^{89} + ( -8 \zeta_{8} + 10 \zeta_{8}^{2} - 8 \zeta_{8}^{3} ) q^{91} + ( 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{95} + ( 2 + 6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + O(q^{10})$$ $$4q + 8q^{13} + 24q^{23} - 4q^{25} - 8q^{35} - 24q^{37} + 32q^{47} + 4q^{49} - 16q^{59} + 24q^{61} + 32q^{71} - 8q^{73} + 16q^{83} + 16q^{85} + 8q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$641$$ $$901$$ $$2431$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1151.1
 −0.707107 + 0.707107i 0.707107 − 0.707107i 0.707107 + 0.707107i −0.707107 − 0.707107i
0 0 0 1.00000i 0 3.41421i 0 0 0
1151.2 0 0 0 1.00000i 0 0.585786i 0 0 0
1151.3 0 0 0 1.00000i 0 0.585786i 0 0 0
1151.4 0 0 0 1.00000i 0 3.41421i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.h.c 4
3.b odd 2 1 2880.2.h.b 4
4.b odd 2 1 2880.2.h.b 4
8.b even 2 1 1440.2.h.c yes 4
8.d odd 2 1 1440.2.h.b 4
12.b even 2 1 inner 2880.2.h.c 4
24.f even 2 1 1440.2.h.c yes 4
24.h odd 2 1 1440.2.h.b 4
40.e odd 2 1 7200.2.h.f 4
40.f even 2 1 7200.2.h.e 4
40.i odd 4 1 7200.2.o.d 4
40.i odd 4 1 7200.2.o.k 4
40.k even 4 1 7200.2.o.c 4
40.k even 4 1 7200.2.o.l 4
120.i odd 2 1 7200.2.h.f 4
120.m even 2 1 7200.2.h.e 4
120.q odd 4 1 7200.2.o.d 4
120.q odd 4 1 7200.2.o.k 4
120.w even 4 1 7200.2.o.c 4
120.w even 4 1 7200.2.o.l 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1440.2.h.b 4 8.d odd 2 1
1440.2.h.b 4 24.h odd 2 1
1440.2.h.c yes 4 8.b even 2 1
1440.2.h.c yes 4 24.f even 2 1
2880.2.h.b 4 3.b odd 2 1
2880.2.h.b 4 4.b odd 2 1
2880.2.h.c 4 1.a even 1 1 trivial
2880.2.h.c 4 12.b even 2 1 inner
7200.2.h.e 4 40.f even 2 1
7200.2.h.e 4 120.m even 2 1
7200.2.h.f 4 40.e odd 2 1
7200.2.h.f 4 120.i odd 2 1
7200.2.o.c 4 40.k even 4 1
7200.2.o.c 4 120.w even 4 1
7200.2.o.d 4 40.i odd 4 1
7200.2.o.d 4 120.q odd 4 1
7200.2.o.k 4 40.i odd 4 1
7200.2.o.k 4 120.q odd 4 1
7200.2.o.l 4 40.k even 4 1
7200.2.o.l 4 120.w even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2880, [\chi])$$:

 $$T_{7}^{4} + 12 T_{7}^{2} + 4$$ $$T_{11}^{2} - 2$$ $$T_{23}^{2} - 12 T_{23} + 28$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4}$$
$5$ $$( 1 + T^{2} )^{2}$$
$7$ $$4 + 12 T^{2} + T^{4}$$
$11$ $$( -2 + T^{2} )^{2}$$
$13$ $$( -14 - 4 T + T^{2} )^{2}$$
$17$ $$64 + 48 T^{2} + T^{4}$$
$19$ $$( 32 + T^{2} )^{2}$$
$23$ $$( 28 - 12 T + T^{2} )^{2}$$
$29$ $$( 4 + T^{2} )^{2}$$
$31$ $$784 + 88 T^{2} + T^{4}$$
$37$ $$( 34 + 12 T + T^{2} )^{2}$$
$41$ $$4 + 68 T^{2} + T^{4}$$
$43$ $$64 + 48 T^{2} + T^{4}$$
$47$ $$( -8 + T )^{4}$$
$53$ $$64 + 48 T^{2} + T^{4}$$
$59$ $$( 14 + 8 T + T^{2} )^{2}$$
$61$ $$( 28 - 12 T + T^{2} )^{2}$$
$67$ $$( 128 + T^{2} )^{2}$$
$71$ $$( 32 - 16 T + T^{2} )^{2}$$
$73$ $$( -4 + 4 T + T^{2} )^{2}$$
$79$ $$4624 + 152 T^{2} + T^{4}$$
$83$ $$( 8 - 8 T + T^{2} )^{2}$$
$89$ $$196 + 228 T^{2} + T^{4}$$
$97$ $$( -68 - 4 T + T^{2} )^{2}$$