Properties

Label 2880.2.ff
Level $2880$
Weight $2$
Character orbit 2880.ff
Rep. character $\chi_{2880}(11,\cdot)$
Character field $\Q(\zeta_{48})$
Dimension $6144$
Sturm bound $1152$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.ff (of order \(48\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 576 \)
Character field: \(\Q(\zeta_{48})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2880, [\chi])\).

Total New Old
Modular forms 9280 6144 3136
Cusp forms 9152 6144 3008
Eisenstein series 128 0 128

Trace form

\( 6144q + O(q^{10}) \) \( 6144q + 160q^{24} + 160q^{42} - 144q^{58} + 48q^{76} + 48q^{78} + 112q^{84} + 144q^{90} + 272q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2880, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2880, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2880, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)