Properties

Label 2880.2.f.n
Level $2880$
Weight $2$
Character orbit 2880.f
Analytic conductor $22.997$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(22.9969157821\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - 2 i ) q^{5} +O(q^{10})\) \( q + ( 1 - 2 i ) q^{5} + 4 i q^{13} -8 i q^{17} + ( -3 - 4 i ) q^{25} -10 q^{29} -12 i q^{37} + 10 q^{41} + 7 q^{49} + 4 i q^{53} -10 q^{61} + ( 8 + 4 i ) q^{65} -16 i q^{73} + ( -16 - 8 i ) q^{85} -10 q^{89} -8 i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{5} + O(q^{10}) \) \( 2q + 2q^{5} - 6q^{25} - 20q^{29} + 20q^{41} + 14q^{49} - 20q^{61} + 16q^{65} - 32q^{85} - 20q^{89} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1729.1
1.00000i
1.00000i
0 0 0 1.00000 2.00000i 0 0 0 0 0
1729.2 0 0 0 1.00000 + 2.00000i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
5.b even 2 1 inner
20.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.f.n 2
3.b odd 2 1 320.2.c.a 2
4.b odd 2 1 CM 2880.2.f.n 2
5.b even 2 1 inner 2880.2.f.n 2
8.b even 2 1 1440.2.f.c 2
8.d odd 2 1 1440.2.f.c 2
12.b even 2 1 320.2.c.a 2
15.d odd 2 1 320.2.c.a 2
15.e even 4 1 1600.2.a.l 1
15.e even 4 1 1600.2.a.m 1
20.d odd 2 1 inner 2880.2.f.n 2
24.f even 2 1 160.2.c.a 2
24.h odd 2 1 160.2.c.a 2
40.e odd 2 1 1440.2.f.c 2
40.f even 2 1 1440.2.f.c 2
40.i odd 4 1 7200.2.a.y 1
40.i odd 4 1 7200.2.a.bb 1
40.k even 4 1 7200.2.a.y 1
40.k even 4 1 7200.2.a.bb 1
48.i odd 4 1 1280.2.f.c 2
48.i odd 4 1 1280.2.f.d 2
48.k even 4 1 1280.2.f.c 2
48.k even 4 1 1280.2.f.d 2
60.h even 2 1 320.2.c.a 2
60.l odd 4 1 1600.2.a.l 1
60.l odd 4 1 1600.2.a.m 1
120.i odd 2 1 160.2.c.a 2
120.m even 2 1 160.2.c.a 2
120.q odd 4 1 800.2.a.e 1
120.q odd 4 1 800.2.a.f 1
120.w even 4 1 800.2.a.e 1
120.w even 4 1 800.2.a.f 1
240.t even 4 1 1280.2.f.c 2
240.t even 4 1 1280.2.f.d 2
240.bm odd 4 1 1280.2.f.c 2
240.bm odd 4 1 1280.2.f.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.2.c.a 2 24.f even 2 1
160.2.c.a 2 24.h odd 2 1
160.2.c.a 2 120.i odd 2 1
160.2.c.a 2 120.m even 2 1
320.2.c.a 2 3.b odd 2 1
320.2.c.a 2 12.b even 2 1
320.2.c.a 2 15.d odd 2 1
320.2.c.a 2 60.h even 2 1
800.2.a.e 1 120.q odd 4 1
800.2.a.e 1 120.w even 4 1
800.2.a.f 1 120.q odd 4 1
800.2.a.f 1 120.w even 4 1
1280.2.f.c 2 48.i odd 4 1
1280.2.f.c 2 48.k even 4 1
1280.2.f.c 2 240.t even 4 1
1280.2.f.c 2 240.bm odd 4 1
1280.2.f.d 2 48.i odd 4 1
1280.2.f.d 2 48.k even 4 1
1280.2.f.d 2 240.t even 4 1
1280.2.f.d 2 240.bm odd 4 1
1440.2.f.c 2 8.b even 2 1
1440.2.f.c 2 8.d odd 2 1
1440.2.f.c 2 40.e odd 2 1
1440.2.f.c 2 40.f even 2 1
1600.2.a.l 1 15.e even 4 1
1600.2.a.l 1 60.l odd 4 1
1600.2.a.m 1 15.e even 4 1
1600.2.a.m 1 60.l odd 4 1
2880.2.f.n 2 1.a even 1 1 trivial
2880.2.f.n 2 4.b odd 2 1 CM
2880.2.f.n 2 5.b even 2 1 inner
2880.2.f.n 2 20.d odd 2 1 inner
7200.2.a.y 1 40.i odd 4 1
7200.2.a.y 1 40.k even 4 1
7200.2.a.bb 1 40.i odd 4 1
7200.2.a.bb 1 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2880, [\chi])\):

\( T_{7} \)
\( T_{11} \)
\( T_{13}^{2} + 16 \)
\( T_{17}^{2} + 64 \)
\( T_{19} \)
\( T_{29} + 10 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( 5 - 2 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( T^{2} \)
$13$ \( 16 + T^{2} \)
$17$ \( 64 + T^{2} \)
$19$ \( T^{2} \)
$23$ \( T^{2} \)
$29$ \( ( 10 + T )^{2} \)
$31$ \( T^{2} \)
$37$ \( 144 + T^{2} \)
$41$ \( ( -10 + T )^{2} \)
$43$ \( T^{2} \)
$47$ \( T^{2} \)
$53$ \( 16 + T^{2} \)
$59$ \( T^{2} \)
$61$ \( ( 10 + T )^{2} \)
$67$ \( T^{2} \)
$71$ \( T^{2} \)
$73$ \( 256 + T^{2} \)
$79$ \( T^{2} \)
$83$ \( T^{2} \)
$89$ \( ( 10 + T )^{2} \)
$97$ \( 64 + T^{2} \)
show more
show less