# Properties

 Label 2880.2.f.j Level $2880$ Weight $2$ Character orbit 2880.f Analytic conductor $22.997$ Analytic rank $0$ Dimension $2$ CM discriminant -15 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2880,2,Mod(1729,2880)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2880, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2880.1729");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2880 = 2^{6} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2880.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$22.9969157821$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-5})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 5$$ x^2 + 5 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 45) Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{-5}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - \beta q^{5} +O(q^{10})$$ q - b * q^5 $$q - \beta q^{5} + 2 \beta q^{17} - 4 q^{19} + 4 \beta q^{23} - 5 q^{25} - 8 q^{31} + 4 \beta q^{47} + 7 q^{49} - 2 \beta q^{53} - 2 q^{61} + 16 q^{79} + 8 \beta q^{83} + 10 q^{85} + 4 \beta q^{95} +O(q^{100})$$ q - b * q^5 + 2*b * q^17 - 4 * q^19 + 4*b * q^23 - 5 * q^25 - 8 * q^31 + 4*b * q^47 + 7 * q^49 - 2*b * q^53 - 2 * q^61 + 16 * q^79 + 8*b * q^83 + 10 * q^85 + 4*b * q^95 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q+O(q^{10})$$ 2 * q $$2 q - 8 q^{19} - 10 q^{25} - 16 q^{31} + 14 q^{49} - 4 q^{61} + 32 q^{79} + 20 q^{85}+O(q^{100})$$ 2 * q - 8 * q^19 - 10 * q^25 - 16 * q^31 + 14 * q^49 - 4 * q^61 + 32 * q^79 + 20 * q^85

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$641$$ $$901$$ $$2431$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1729.1
 2.23607i − 2.23607i
0 0 0 2.23607i 0 0 0 0 0
1729.2 0 0 0 2.23607i 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by $$\Q(\sqrt{-15})$$
3.b odd 2 1 inner
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.f.j 2
3.b odd 2 1 inner 2880.2.f.j 2
4.b odd 2 1 2880.2.f.k 2
5.b even 2 1 inner 2880.2.f.j 2
8.b even 2 1 720.2.f.d 2
8.d odd 2 1 45.2.b.a 2
12.b even 2 1 2880.2.f.k 2
15.d odd 2 1 CM 2880.2.f.j 2
20.d odd 2 1 2880.2.f.k 2
24.f even 2 1 45.2.b.a 2
24.h odd 2 1 720.2.f.d 2
40.e odd 2 1 45.2.b.a 2
40.f even 2 1 720.2.f.d 2
40.i odd 4 2 3600.2.a.bs 2
40.k even 4 2 225.2.a.f 2
56.e even 2 1 2205.2.d.a 2
60.h even 2 1 2880.2.f.k 2
72.l even 6 2 405.2.j.c 4
72.p odd 6 2 405.2.j.c 4
120.i odd 2 1 720.2.f.d 2
120.m even 2 1 45.2.b.a 2
120.q odd 4 2 225.2.a.f 2
120.w even 4 2 3600.2.a.bs 2
168.e odd 2 1 2205.2.d.a 2
280.n even 2 1 2205.2.d.a 2
360.z odd 6 2 405.2.j.c 4
360.bd even 6 2 405.2.j.c 4
840.b odd 2 1 2205.2.d.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.2.b.a 2 8.d odd 2 1
45.2.b.a 2 24.f even 2 1
45.2.b.a 2 40.e odd 2 1
45.2.b.a 2 120.m even 2 1
225.2.a.f 2 40.k even 4 2
225.2.a.f 2 120.q odd 4 2
405.2.j.c 4 72.l even 6 2
405.2.j.c 4 72.p odd 6 2
405.2.j.c 4 360.z odd 6 2
405.2.j.c 4 360.bd even 6 2
720.2.f.d 2 8.b even 2 1
720.2.f.d 2 24.h odd 2 1
720.2.f.d 2 40.f even 2 1
720.2.f.d 2 120.i odd 2 1
2205.2.d.a 2 56.e even 2 1
2205.2.d.a 2 168.e odd 2 1
2205.2.d.a 2 280.n even 2 1
2205.2.d.a 2 840.b odd 2 1
2880.2.f.j 2 1.a even 1 1 trivial
2880.2.f.j 2 3.b odd 2 1 inner
2880.2.f.j 2 5.b even 2 1 inner
2880.2.f.j 2 15.d odd 2 1 CM
2880.2.f.k 2 4.b odd 2 1
2880.2.f.k 2 12.b even 2 1
2880.2.f.k 2 20.d odd 2 1
2880.2.f.k 2 60.h even 2 1
3600.2.a.bs 2 40.i odd 4 2
3600.2.a.bs 2 120.w even 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2880, [\chi])$$:

 $$T_{7}$$ T7 $$T_{11}$$ T11 $$T_{13}$$ T13 $$T_{17}^{2} + 20$$ T17^2 + 20 $$T_{19} + 4$$ T19 + 4 $$T_{29}$$ T29

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2} + 5$$
$7$ $$T^{2}$$
$11$ $$T^{2}$$
$13$ $$T^{2}$$
$17$ $$T^{2} + 20$$
$19$ $$(T + 4)^{2}$$
$23$ $$T^{2} + 80$$
$29$ $$T^{2}$$
$31$ $$(T + 8)^{2}$$
$37$ $$T^{2}$$
$41$ $$T^{2}$$
$43$ $$T^{2}$$
$47$ $$T^{2} + 80$$
$53$ $$T^{2} + 20$$
$59$ $$T^{2}$$
$61$ $$(T + 2)^{2}$$
$67$ $$T^{2}$$
$71$ $$T^{2}$$
$73$ $$T^{2}$$
$79$ $$(T - 16)^{2}$$
$83$ $$T^{2} + 320$$
$89$ $$T^{2}$$
$97$ $$T^{2}$$