Properties

Label 2880.2.f.e
Level $2880$
Weight $2$
Character orbit 2880.f
Analytic conductor $22.997$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(22.9969157821\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - i - 2) q^{5} + 2 i q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - i - 2) q^{5} + 2 i q^{7} + 2 q^{11} + 6 i q^{13} - 2 i q^{17} - 4 i q^{23} + (4 i + 3) q^{25} - 8 q^{31} + ( - 4 i + 2) q^{35} - 2 i q^{37} - 2 q^{41} - 4 i q^{43} + 8 i q^{47} + 3 q^{49} - 6 i q^{53} + ( - 2 i - 4) q^{55} - 10 q^{59} - 2 q^{61} + ( - 12 i + 6) q^{65} + 8 i q^{67} - 12 q^{71} + 4 i q^{73} + 4 i q^{77} + 4 i q^{83} + (4 i - 2) q^{85} - 10 q^{89} - 12 q^{91} - 8 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{5} + 4 q^{11} + 6 q^{25} - 16 q^{31} + 4 q^{35} - 4 q^{41} + 6 q^{49} - 8 q^{55} - 20 q^{59} - 4 q^{61} + 12 q^{65} - 24 q^{71} - 4 q^{85} - 20 q^{89} - 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1729.1
1.00000i
1.00000i
0 0 0 −2.00000 1.00000i 0 2.00000i 0 0 0
1729.2 0 0 0 −2.00000 + 1.00000i 0 2.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.f.e 2
3.b odd 2 1 960.2.f.h 2
4.b odd 2 1 2880.2.f.c 2
5.b even 2 1 inner 2880.2.f.e 2
8.b even 2 1 90.2.c.a 2
8.d odd 2 1 720.2.f.f 2
12.b even 2 1 960.2.f.i 2
15.d odd 2 1 960.2.f.h 2
15.e even 4 1 4800.2.a.l 1
15.e even 4 1 4800.2.a.cg 1
20.d odd 2 1 2880.2.f.c 2
24.f even 2 1 240.2.f.a 2
24.h odd 2 1 30.2.c.a 2
40.e odd 2 1 720.2.f.f 2
40.f even 2 1 90.2.c.a 2
40.i odd 4 1 450.2.a.b 1
40.i odd 4 1 450.2.a.f 1
40.k even 4 1 3600.2.a.o 1
40.k even 4 1 3600.2.a.bg 1
48.i odd 4 1 3840.2.d.g 2
48.i odd 4 1 3840.2.d.y 2
48.k even 4 1 3840.2.d.j 2
48.k even 4 1 3840.2.d.x 2
60.h even 2 1 960.2.f.i 2
60.l odd 4 1 4800.2.a.m 1
60.l odd 4 1 4800.2.a.cj 1
72.j odd 6 2 810.2.i.e 4
72.n even 6 2 810.2.i.b 4
120.i odd 2 1 30.2.c.a 2
120.m even 2 1 240.2.f.a 2
120.q odd 4 1 1200.2.a.g 1
120.q odd 4 1 1200.2.a.m 1
120.w even 4 1 150.2.a.a 1
120.w even 4 1 150.2.a.c 1
168.i even 2 1 1470.2.g.g 2
168.s odd 6 2 1470.2.n.h 4
168.ba even 6 2 1470.2.n.a 4
240.t even 4 1 3840.2.d.j 2
240.t even 4 1 3840.2.d.x 2
240.bm odd 4 1 3840.2.d.g 2
240.bm odd 4 1 3840.2.d.y 2
360.bh odd 6 2 810.2.i.e 4
360.bk even 6 2 810.2.i.b 4
840.u even 2 1 1470.2.g.g 2
840.bp odd 4 1 7350.2.a.bg 1
840.bp odd 4 1 7350.2.a.cc 1
840.cb even 6 2 1470.2.n.a 4
840.cg odd 6 2 1470.2.n.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.2.c.a 2 24.h odd 2 1
30.2.c.a 2 120.i odd 2 1
90.2.c.a 2 8.b even 2 1
90.2.c.a 2 40.f even 2 1
150.2.a.a 1 120.w even 4 1
150.2.a.c 1 120.w even 4 1
240.2.f.a 2 24.f even 2 1
240.2.f.a 2 120.m even 2 1
450.2.a.b 1 40.i odd 4 1
450.2.a.f 1 40.i odd 4 1
720.2.f.f 2 8.d odd 2 1
720.2.f.f 2 40.e odd 2 1
810.2.i.b 4 72.n even 6 2
810.2.i.b 4 360.bk even 6 2
810.2.i.e 4 72.j odd 6 2
810.2.i.e 4 360.bh odd 6 2
960.2.f.h 2 3.b odd 2 1
960.2.f.h 2 15.d odd 2 1
960.2.f.i 2 12.b even 2 1
960.2.f.i 2 60.h even 2 1
1200.2.a.g 1 120.q odd 4 1
1200.2.a.m 1 120.q odd 4 1
1470.2.g.g 2 168.i even 2 1
1470.2.g.g 2 840.u even 2 1
1470.2.n.a 4 168.ba even 6 2
1470.2.n.a 4 840.cb even 6 2
1470.2.n.h 4 168.s odd 6 2
1470.2.n.h 4 840.cg odd 6 2
2880.2.f.c 2 4.b odd 2 1
2880.2.f.c 2 20.d odd 2 1
2880.2.f.e 2 1.a even 1 1 trivial
2880.2.f.e 2 5.b even 2 1 inner
3600.2.a.o 1 40.k even 4 1
3600.2.a.bg 1 40.k even 4 1
3840.2.d.g 2 48.i odd 4 1
3840.2.d.g 2 240.bm odd 4 1
3840.2.d.j 2 48.k even 4 1
3840.2.d.j 2 240.t even 4 1
3840.2.d.x 2 48.k even 4 1
3840.2.d.x 2 240.t even 4 1
3840.2.d.y 2 48.i odd 4 1
3840.2.d.y 2 240.bm odd 4 1
4800.2.a.l 1 15.e even 4 1
4800.2.a.m 1 60.l odd 4 1
4800.2.a.cg 1 15.e even 4 1
4800.2.a.cj 1 60.l odd 4 1
7350.2.a.bg 1 840.bp odd 4 1
7350.2.a.cc 1 840.bp odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2880, [\chi])\):

\( T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{13}^{2} + 36 \) Copy content Toggle raw display
\( T_{17}^{2} + 4 \) Copy content Toggle raw display
\( T_{19} \) Copy content Toggle raw display
\( T_{29} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( (T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 36 \) Copy content Toggle raw display
$17$ \( T^{2} + 4 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 16 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T + 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( (T + 10)^{2} \) Copy content Toggle raw display
$61$ \( (T + 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 64 \) Copy content Toggle raw display
$71$ \( (T + 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 16 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 16 \) Copy content Toggle raw display
$89$ \( (T + 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 64 \) Copy content Toggle raw display
show more
show less