# Properties

 Label 2880.2.f.b Level $2880$ Weight $2$ Character orbit 2880.f Analytic conductor $22.997$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2880 = 2^{6} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2880.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$22.9969157821$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 360) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -2 + i ) q^{5} + 4 i q^{7} +O(q^{10})$$ $$q + ( -2 + i ) q^{5} + 4 i q^{7} -4 q^{11} + 4 i q^{13} + 6 i q^{17} + 4 q^{19} + 4 i q^{23} + ( 3 - 4 i ) q^{25} -4 q^{29} + ( -4 - 8 i ) q^{35} -4 i q^{37} + 8 q^{41} -12 i q^{47} -9 q^{49} + 2 i q^{53} + ( 8 - 4 i ) q^{55} -12 q^{59} -2 q^{61} + ( -4 - 8 i ) q^{65} + 8 i q^{67} -8 q^{71} + 16 i q^{73} -16 i q^{77} -8 q^{79} -8 i q^{83} + ( -6 - 12 i ) q^{85} -16 q^{91} + ( -8 + 4 i ) q^{95} -8 i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 4q^{5} + O(q^{10})$$ $$2q - 4q^{5} - 8q^{11} + 8q^{19} + 6q^{25} - 8q^{29} - 8q^{35} + 16q^{41} - 18q^{49} + 16q^{55} - 24q^{59} - 4q^{61} - 8q^{65} - 16q^{71} - 16q^{79} - 12q^{85} - 32q^{91} - 16q^{95} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$641$$ $$901$$ $$2431$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1729.1
 − 1.00000i 1.00000i
0 0 0 −2.00000 1.00000i 0 4.00000i 0 0 0
1729.2 0 0 0 −2.00000 + 1.00000i 0 4.00000i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.f.b 2
3.b odd 2 1 2880.2.f.u 2
4.b odd 2 1 2880.2.f.f 2
5.b even 2 1 inner 2880.2.f.b 2
8.b even 2 1 720.2.f.g 2
8.d odd 2 1 360.2.f.d yes 2
12.b even 2 1 2880.2.f.q 2
15.d odd 2 1 2880.2.f.u 2
20.d odd 2 1 2880.2.f.f 2
24.f even 2 1 360.2.f.b 2
24.h odd 2 1 720.2.f.a 2
40.e odd 2 1 360.2.f.d yes 2
40.f even 2 1 720.2.f.g 2
40.i odd 4 1 3600.2.a.g 1
40.i odd 4 1 3600.2.a.bp 1
40.k even 4 1 1800.2.a.b 1
40.k even 4 1 1800.2.a.u 1
60.h even 2 1 2880.2.f.q 2
120.i odd 2 1 720.2.f.a 2
120.m even 2 1 360.2.f.b 2
120.q odd 4 1 1800.2.a.d 1
120.q odd 4 1 1800.2.a.w 1
120.w even 4 1 3600.2.a.c 1
120.w even 4 1 3600.2.a.bn 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.f.b 2 24.f even 2 1
360.2.f.b 2 120.m even 2 1
360.2.f.d yes 2 8.d odd 2 1
360.2.f.d yes 2 40.e odd 2 1
720.2.f.a 2 24.h odd 2 1
720.2.f.a 2 120.i odd 2 1
720.2.f.g 2 8.b even 2 1
720.2.f.g 2 40.f even 2 1
1800.2.a.b 1 40.k even 4 1
1800.2.a.d 1 120.q odd 4 1
1800.2.a.u 1 40.k even 4 1
1800.2.a.w 1 120.q odd 4 1
2880.2.f.b 2 1.a even 1 1 trivial
2880.2.f.b 2 5.b even 2 1 inner
2880.2.f.f 2 4.b odd 2 1
2880.2.f.f 2 20.d odd 2 1
2880.2.f.q 2 12.b even 2 1
2880.2.f.q 2 60.h even 2 1
2880.2.f.u 2 3.b odd 2 1
2880.2.f.u 2 15.d odd 2 1
3600.2.a.c 1 120.w even 4 1
3600.2.a.g 1 40.i odd 4 1
3600.2.a.bn 1 120.w even 4 1
3600.2.a.bp 1 40.i odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2880, [\chi])$$:

 $$T_{7}^{2} + 16$$ $$T_{11} + 4$$ $$T_{13}^{2} + 16$$ $$T_{17}^{2} + 36$$ $$T_{19} - 4$$ $$T_{29} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$5 + 4 T + T^{2}$$
$7$ $$16 + T^{2}$$
$11$ $$( 4 + T )^{2}$$
$13$ $$16 + T^{2}$$
$17$ $$36 + T^{2}$$
$19$ $$( -4 + T )^{2}$$
$23$ $$16 + T^{2}$$
$29$ $$( 4 + T )^{2}$$
$31$ $$T^{2}$$
$37$ $$16 + T^{2}$$
$41$ $$( -8 + T )^{2}$$
$43$ $$T^{2}$$
$47$ $$144 + T^{2}$$
$53$ $$4 + T^{2}$$
$59$ $$( 12 + T )^{2}$$
$61$ $$( 2 + T )^{2}$$
$67$ $$64 + T^{2}$$
$71$ $$( 8 + T )^{2}$$
$73$ $$256 + T^{2}$$
$79$ $$( 8 + T )^{2}$$
$83$ $$64 + T^{2}$$
$89$ $$T^{2}$$
$97$ $$64 + T^{2}$$