Properties

Label 2880.2.dy
Level $2880$
Weight $2$
Character orbit 2880.dy
Rep. character $\chi_{2880}(109,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $1904$
Sturm bound $1152$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.dy (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 320 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2880, [\chi])\).

Total New Old
Modular forms 4672 1936 2736
Cusp forms 4544 1904 2640
Eisenstein series 128 32 96

Trace form

\( 1904q - 16q^{4} + 8q^{5} + O(q^{10}) \) \( 1904q - 16q^{4} + 8q^{5} - 8q^{10} + 16q^{11} + 16q^{14} - 16q^{16} - 16q^{19} + 8q^{20} - 8q^{25} - 64q^{26} + 16q^{29} - 16q^{34} + 8q^{35} + 32q^{40} + 16q^{41} + 16q^{44} - 16q^{46} - 16q^{49} + 32q^{50} + 56q^{55} - 80q^{56} - 48q^{59} - 16q^{61} - 112q^{64} + 16q^{65} - 104q^{70} + 80q^{71} + 112q^{74} - 48q^{76} + 16q^{79} + 32q^{80} - 8q^{85} + 16q^{86} + 16q^{89} - 16q^{91} + 160q^{94} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2880, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2880, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2880, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(960, [\chi])\)\(^{\oplus 2}\)