Properties

Label 2880.2.dw
Level $2880$
Weight $2$
Character orbit 2880.dw
Rep. character $\chi_{2880}(181,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $1280$
Sturm bound $1152$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.dw (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 64 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2880, [\chi])\).

Total New Old
Modular forms 4672 1280 3392
Cusp forms 4544 1280 3264
Eisenstein series 128 0 128

Trace form

\( 1280q + O(q^{10}) \) \( 1280q - 16q^{22} - 80q^{28} - 80q^{32} - 80q^{34} - 80q^{38} - 16q^{44} - 96q^{52} + 16q^{56} + 144q^{58} - 64q^{59} + 96q^{62} - 96q^{64} - 32q^{67} + 96q^{68} - 64q^{71} + 16q^{74} + 32q^{76} + 32q^{79} + 64q^{80} + 208q^{86} + 160q^{88} + 16q^{94} + 272q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2880, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2880, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2880, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(960, [\chi])\)\(^{\oplus 2}\)