Properties

Label 2880.2.dc
Level $2880$
Weight $2$
Character orbit 2880.dc
Rep. character $\chi_{2880}(113,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $560$
Sturm bound $1152$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.dc (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 720 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2880, [\chi])\).

Total New Old
Modular forms 2368 592 1776
Cusp forms 2240 560 1680
Eisenstein series 128 32 96

Trace form

\( 560q + 8q^{3} - 6q^{5} + O(q^{10}) \) \( 560q + 8q^{3} - 6q^{5} + 12q^{11} - 4q^{13} + 8q^{15} - 8q^{21} + 8q^{27} + 8q^{31} - 8q^{33} - 16q^{37} - 24q^{39} - 14q^{45} + 12q^{47} + 8q^{51} - 24q^{57} - 4q^{61} - 20q^{63} - 12q^{65} - 12q^{69} + 54q^{75} - 16q^{81} + 12q^{83} + 8q^{85} + 12q^{87} + 16q^{91} + 4q^{93} + 12q^{95} - 4q^{97} + 32q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2880, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2880, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2880, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 3}\)