# Properties

 Label 2880.2.d.h Level $2880$ Weight $2$ Character orbit 2880.d Analytic conductor $22.997$ Analytic rank $0$ Dimension $8$ CM no Inner twists $8$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2880 = 2^{6} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2880.d (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$22.9969157821$$ Analytic rank: $$0$$ Dimension: $$8$$ Coefficient field: $$\Q(\zeta_{24})$$ Defining polynomial: $$x^{8} - x^{4} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2^{12}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{24}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -1 - \zeta_{24} - \zeta_{24}^{3} + 2 \zeta_{24}^{4} + \zeta_{24}^{5} ) q^{5} + ( -2 \zeta_{24} + 2 \zeta_{24}^{3} + 2 \zeta_{24}^{5} ) q^{7} +O(q^{10})$$ $$q + ( -1 - \zeta_{24} - \zeta_{24}^{3} + 2 \zeta_{24}^{4} + \zeta_{24}^{5} ) q^{5} + ( -2 \zeta_{24} + 2 \zeta_{24}^{3} + 2 \zeta_{24}^{5} ) q^{7} -2 \zeta_{24}^{6} q^{11} + ( -2 \zeta_{24} - 2 \zeta_{24}^{3} + 2 \zeta_{24}^{5} ) q^{13} + ( -2 \zeta_{24} + 2 \zeta_{24}^{3} - 2 \zeta_{24}^{5} - 4 \zeta_{24}^{7} ) q^{17} + ( 4 \zeta_{24} - 4 \zeta_{24}^{3} - 4 \zeta_{24}^{5} ) q^{23} + ( -1 - 2 \zeta_{24} + 2 \zeta_{24}^{3} - 2 \zeta_{24}^{5} - 4 \zeta_{24}^{7} ) q^{25} + ( -2 + 4 \zeta_{24}^{4} ) q^{29} + ( -4 \zeta_{24}^{2} + 2 \zeta_{24}^{6} ) q^{31} + ( -2 \zeta_{24} - 2 \zeta_{24}^{3} - 2 \zeta_{24}^{5} - 4 \zeta_{24}^{6} + 4 \zeta_{24}^{7} ) q^{35} + ( -2 \zeta_{24} - 2 \zeta_{24}^{3} + 2 \zeta_{24}^{5} ) q^{37} + 8 q^{41} + ( -4 \zeta_{24} - 4 \zeta_{24}^{3} - 4 \zeta_{24}^{5} + 8 \zeta_{24}^{7} ) q^{43} - q^{49} + ( 6 \zeta_{24} + 6 \zeta_{24}^{3} - 6 \zeta_{24}^{5} ) q^{53} + ( -2 \zeta_{24} + 4 \zeta_{24}^{2} + 2 \zeta_{24}^{3} + 2 \zeta_{24}^{5} - 2 \zeta_{24}^{6} ) q^{55} -10 \zeta_{24}^{6} q^{59} + ( 4 - 8 \zeta_{24}^{4} ) q^{61} + ( 4 - 2 \zeta_{24} + 2 \zeta_{24}^{3} - 2 \zeta_{24}^{5} - 4 \zeta_{24}^{7} ) q^{65} + ( 4 \zeta_{24} + 4 \zeta_{24}^{3} + 4 \zeta_{24}^{5} - 8 \zeta_{24}^{7} ) q^{67} + ( 16 \zeta_{24}^{2} - 8 \zeta_{24}^{6} ) q^{71} + ( 4 \zeta_{24} - 4 \zeta_{24}^{3} + 4 \zeta_{24}^{5} + 8 \zeta_{24}^{7} ) q^{73} + ( 4 \zeta_{24} + 4 \zeta_{24}^{3} - 4 \zeta_{24}^{5} ) q^{77} + ( 4 \zeta_{24}^{2} - 2 \zeta_{24}^{6} ) q^{79} + ( -4 \zeta_{24} - 4 \zeta_{24}^{3} - 4 \zeta_{24}^{5} + 8 \zeta_{24}^{7} ) q^{83} + ( -4 + 6 \zeta_{24} + 6 \zeta_{24}^{3} + 8 \zeta_{24}^{4} - 6 \zeta_{24}^{5} ) q^{85} + 16 q^{89} -8 \zeta_{24}^{6} q^{91} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8q + O(q^{10})$$ $$8q - 8q^{25} + 64q^{41} - 8q^{49} + 32q^{65} + 128q^{89} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$641$$ $$901$$ $$2431$$ $$\chi(n)$$ $$-1$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
289.1
 0.965926 − 0.258819i −0.258819 − 0.965926i −0.258819 + 0.965926i 0.965926 + 0.258819i 0.258819 + 0.965926i −0.965926 + 0.258819i −0.965926 − 0.258819i 0.258819 − 0.965926i
0 0 0 −1.41421 1.73205i 0 2.82843i 0 0 0
289.2 0 0 0 −1.41421 1.73205i 0 2.82843i 0 0 0
289.3 0 0 0 −1.41421 + 1.73205i 0 2.82843i 0 0 0
289.4 0 0 0 −1.41421 + 1.73205i 0 2.82843i 0 0 0
289.5 0 0 0 1.41421 1.73205i 0 2.82843i 0 0 0
289.6 0 0 0 1.41421 1.73205i 0 2.82843i 0 0 0
289.7 0 0 0 1.41421 + 1.73205i 0 2.82843i 0 0 0
289.8 0 0 0 1.41421 + 1.73205i 0 2.82843i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 289.8 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
20.d odd 2 1 inner
40.e odd 2 1 inner
40.f even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.d.h yes 8
3.b odd 2 1 2880.2.d.f 8
4.b odd 2 1 inner 2880.2.d.h yes 8
5.b even 2 1 inner 2880.2.d.h yes 8
8.b even 2 1 inner 2880.2.d.h yes 8
8.d odd 2 1 inner 2880.2.d.h yes 8
12.b even 2 1 2880.2.d.f 8
15.d odd 2 1 2880.2.d.f 8
20.d odd 2 1 inner 2880.2.d.h yes 8
24.f even 2 1 2880.2.d.f 8
24.h odd 2 1 2880.2.d.f 8
40.e odd 2 1 inner 2880.2.d.h yes 8
40.f even 2 1 inner 2880.2.d.h yes 8
60.h even 2 1 2880.2.d.f 8
120.i odd 2 1 2880.2.d.f 8
120.m even 2 1 2880.2.d.f 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2880.2.d.f 8 3.b odd 2 1
2880.2.d.f 8 12.b even 2 1
2880.2.d.f 8 15.d odd 2 1
2880.2.d.f 8 24.f even 2 1
2880.2.d.f 8 24.h odd 2 1
2880.2.d.f 8 60.h even 2 1
2880.2.d.f 8 120.i odd 2 1
2880.2.d.f 8 120.m even 2 1
2880.2.d.h yes 8 1.a even 1 1 trivial
2880.2.d.h yes 8 4.b odd 2 1 inner
2880.2.d.h yes 8 5.b even 2 1 inner
2880.2.d.h yes 8 8.b even 2 1 inner
2880.2.d.h yes 8 8.d odd 2 1 inner
2880.2.d.h yes 8 20.d odd 2 1 inner
2880.2.d.h yes 8 40.e odd 2 1 inner
2880.2.d.h yes 8 40.f even 2 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2880, [\chi])$$:

 $$T_{7}^{2} + 8$$ $$T_{11}^{2} + 4$$ $$T_{13}^{2} - 8$$ $$T_{31}^{2} - 12$$ $$T_{41} - 8$$ $$T_{43}^{2} - 96$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{8}$$
$3$ $$T^{8}$$
$5$ $$( 25 + 2 T^{2} + T^{4} )^{2}$$
$7$ $$( 8 + T^{2} )^{4}$$
$11$ $$( 4 + T^{2} )^{4}$$
$13$ $$( -8 + T^{2} )^{4}$$
$17$ $$( 24 + T^{2} )^{4}$$
$19$ $$T^{8}$$
$23$ $$( 32 + T^{2} )^{4}$$
$29$ $$( 12 + T^{2} )^{4}$$
$31$ $$( -12 + T^{2} )^{4}$$
$37$ $$( -8 + T^{2} )^{4}$$
$41$ $$( -8 + T )^{8}$$
$43$ $$( -96 + T^{2} )^{4}$$
$47$ $$T^{8}$$
$53$ $$( -72 + T^{2} )^{4}$$
$59$ $$( 100 + T^{2} )^{4}$$
$61$ $$( 48 + T^{2} )^{4}$$
$67$ $$( -96 + T^{2} )^{4}$$
$71$ $$( -192 + T^{2} )^{4}$$
$73$ $$( 96 + T^{2} )^{4}$$
$79$ $$( -12 + T^{2} )^{4}$$
$83$ $$( -96 + T^{2} )^{4}$$
$89$ $$( -16 + T )^{8}$$
$97$ $$T^{8}$$