Properties

Label 2880.2.d.h
Level $2880$
Weight $2$
Character orbit 2880.d
Analytic conductor $22.997$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(22.9969157821\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \(x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{24}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - \zeta_{24} - \zeta_{24}^{3} + 2 \zeta_{24}^{4} + \zeta_{24}^{5} ) q^{5} + ( -2 \zeta_{24} + 2 \zeta_{24}^{3} + 2 \zeta_{24}^{5} ) q^{7} +O(q^{10})\) \( q + ( -1 - \zeta_{24} - \zeta_{24}^{3} + 2 \zeta_{24}^{4} + \zeta_{24}^{5} ) q^{5} + ( -2 \zeta_{24} + 2 \zeta_{24}^{3} + 2 \zeta_{24}^{5} ) q^{7} -2 \zeta_{24}^{6} q^{11} + ( -2 \zeta_{24} - 2 \zeta_{24}^{3} + 2 \zeta_{24}^{5} ) q^{13} + ( -2 \zeta_{24} + 2 \zeta_{24}^{3} - 2 \zeta_{24}^{5} - 4 \zeta_{24}^{7} ) q^{17} + ( 4 \zeta_{24} - 4 \zeta_{24}^{3} - 4 \zeta_{24}^{5} ) q^{23} + ( -1 - 2 \zeta_{24} + 2 \zeta_{24}^{3} - 2 \zeta_{24}^{5} - 4 \zeta_{24}^{7} ) q^{25} + ( -2 + 4 \zeta_{24}^{4} ) q^{29} + ( -4 \zeta_{24}^{2} + 2 \zeta_{24}^{6} ) q^{31} + ( -2 \zeta_{24} - 2 \zeta_{24}^{3} - 2 \zeta_{24}^{5} - 4 \zeta_{24}^{6} + 4 \zeta_{24}^{7} ) q^{35} + ( -2 \zeta_{24} - 2 \zeta_{24}^{3} + 2 \zeta_{24}^{5} ) q^{37} + 8 q^{41} + ( -4 \zeta_{24} - 4 \zeta_{24}^{3} - 4 \zeta_{24}^{5} + 8 \zeta_{24}^{7} ) q^{43} - q^{49} + ( 6 \zeta_{24} + 6 \zeta_{24}^{3} - 6 \zeta_{24}^{5} ) q^{53} + ( -2 \zeta_{24} + 4 \zeta_{24}^{2} + 2 \zeta_{24}^{3} + 2 \zeta_{24}^{5} - 2 \zeta_{24}^{6} ) q^{55} -10 \zeta_{24}^{6} q^{59} + ( 4 - 8 \zeta_{24}^{4} ) q^{61} + ( 4 - 2 \zeta_{24} + 2 \zeta_{24}^{3} - 2 \zeta_{24}^{5} - 4 \zeta_{24}^{7} ) q^{65} + ( 4 \zeta_{24} + 4 \zeta_{24}^{3} + 4 \zeta_{24}^{5} - 8 \zeta_{24}^{7} ) q^{67} + ( 16 \zeta_{24}^{2} - 8 \zeta_{24}^{6} ) q^{71} + ( 4 \zeta_{24} - 4 \zeta_{24}^{3} + 4 \zeta_{24}^{5} + 8 \zeta_{24}^{7} ) q^{73} + ( 4 \zeta_{24} + 4 \zeta_{24}^{3} - 4 \zeta_{24}^{5} ) q^{77} + ( 4 \zeta_{24}^{2} - 2 \zeta_{24}^{6} ) q^{79} + ( -4 \zeta_{24} - 4 \zeta_{24}^{3} - 4 \zeta_{24}^{5} + 8 \zeta_{24}^{7} ) q^{83} + ( -4 + 6 \zeta_{24} + 6 \zeta_{24}^{3} + 8 \zeta_{24}^{4} - 6 \zeta_{24}^{5} ) q^{85} + 16 q^{89} -8 \zeta_{24}^{6} q^{91} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + O(q^{10}) \) \( 8q - 8q^{25} + 64q^{41} - 8q^{49} + 32q^{65} + 128q^{89} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
0.965926 0.258819i
−0.258819 0.965926i
−0.258819 + 0.965926i
0.965926 + 0.258819i
0.258819 + 0.965926i
−0.965926 + 0.258819i
−0.965926 0.258819i
0.258819 0.965926i
0 0 0 −1.41421 1.73205i 0 2.82843i 0 0 0
289.2 0 0 0 −1.41421 1.73205i 0 2.82843i 0 0 0
289.3 0 0 0 −1.41421 + 1.73205i 0 2.82843i 0 0 0
289.4 0 0 0 −1.41421 + 1.73205i 0 2.82843i 0 0 0
289.5 0 0 0 1.41421 1.73205i 0 2.82843i 0 0 0
289.6 0 0 0 1.41421 1.73205i 0 2.82843i 0 0 0
289.7 0 0 0 1.41421 + 1.73205i 0 2.82843i 0 0 0
289.8 0 0 0 1.41421 + 1.73205i 0 2.82843i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
20.d odd 2 1 inner
40.e odd 2 1 inner
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.d.h yes 8
3.b odd 2 1 2880.2.d.f 8
4.b odd 2 1 inner 2880.2.d.h yes 8
5.b even 2 1 inner 2880.2.d.h yes 8
8.b even 2 1 inner 2880.2.d.h yes 8
8.d odd 2 1 inner 2880.2.d.h yes 8
12.b even 2 1 2880.2.d.f 8
15.d odd 2 1 2880.2.d.f 8
20.d odd 2 1 inner 2880.2.d.h yes 8
24.f even 2 1 2880.2.d.f 8
24.h odd 2 1 2880.2.d.f 8
40.e odd 2 1 inner 2880.2.d.h yes 8
40.f even 2 1 inner 2880.2.d.h yes 8
60.h even 2 1 2880.2.d.f 8
120.i odd 2 1 2880.2.d.f 8
120.m even 2 1 2880.2.d.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2880.2.d.f 8 3.b odd 2 1
2880.2.d.f 8 12.b even 2 1
2880.2.d.f 8 15.d odd 2 1
2880.2.d.f 8 24.f even 2 1
2880.2.d.f 8 24.h odd 2 1
2880.2.d.f 8 60.h even 2 1
2880.2.d.f 8 120.i odd 2 1
2880.2.d.f 8 120.m even 2 1
2880.2.d.h yes 8 1.a even 1 1 trivial
2880.2.d.h yes 8 4.b odd 2 1 inner
2880.2.d.h yes 8 5.b even 2 1 inner
2880.2.d.h yes 8 8.b even 2 1 inner
2880.2.d.h yes 8 8.d odd 2 1 inner
2880.2.d.h yes 8 20.d odd 2 1 inner
2880.2.d.h yes 8 40.e odd 2 1 inner
2880.2.d.h yes 8 40.f even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2880, [\chi])\):

\( T_{7}^{2} + 8 \)
\( T_{11}^{2} + 4 \)
\( T_{13}^{2} - 8 \)
\( T_{31}^{2} - 12 \)
\( T_{41} - 8 \)
\( T_{43}^{2} - 96 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \)
$3$ \( T^{8} \)
$5$ \( ( 25 + 2 T^{2} + T^{4} )^{2} \)
$7$ \( ( 8 + T^{2} )^{4} \)
$11$ \( ( 4 + T^{2} )^{4} \)
$13$ \( ( -8 + T^{2} )^{4} \)
$17$ \( ( 24 + T^{2} )^{4} \)
$19$ \( T^{8} \)
$23$ \( ( 32 + T^{2} )^{4} \)
$29$ \( ( 12 + T^{2} )^{4} \)
$31$ \( ( -12 + T^{2} )^{4} \)
$37$ \( ( -8 + T^{2} )^{4} \)
$41$ \( ( -8 + T )^{8} \)
$43$ \( ( -96 + T^{2} )^{4} \)
$47$ \( T^{8} \)
$53$ \( ( -72 + T^{2} )^{4} \)
$59$ \( ( 100 + T^{2} )^{4} \)
$61$ \( ( 48 + T^{2} )^{4} \)
$67$ \( ( -96 + T^{2} )^{4} \)
$71$ \( ( -192 + T^{2} )^{4} \)
$73$ \( ( 96 + T^{2} )^{4} \)
$79$ \( ( -12 + T^{2} )^{4} \)
$83$ \( ( -96 + T^{2} )^{4} \)
$89$ \( ( -16 + T )^{8} \)
$97$ \( T^{8} \)
show more
show less