Properties

Label 2880.2.cu
Level $2880$
Weight $2$
Character orbit 2880.cu
Rep. character $\chi_{2880}(49,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $560$
Sturm bound $1152$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.cu (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 720 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2880, [\chi])\).

Total New Old
Modular forms 2368 592 1776
Cusp forms 2240 560 1680
Eisenstein series 128 32 96

Trace form

\( 560q - 2q^{5} + O(q^{10}) \) \( 560q - 2q^{5} + 4q^{11} + 8q^{15} + 16q^{19} + 4q^{21} - 4q^{29} + 8q^{31} - 12q^{35} - 14q^{45} - 240q^{49} - 16q^{51} + 4q^{59} - 4q^{61} - 4q^{65} + 4q^{69} - 58q^{75} + 8q^{79} - 16q^{81} + 8q^{85} - 40q^{91} + 4q^{95} + 76q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2880, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2880, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2880, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 3}\)