Properties

Label 2880.2.br
Level $2880$
Weight $2$
Character orbit 2880.br
Rep. character $\chi_{2880}(959,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $280$
Sturm bound $1152$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.br (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 180 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2880, [\chi])\).

Total New Old
Modular forms 1200 296 904
Cusp forms 1104 280 824
Eisenstein series 96 16 80

Trace form

\( 280q + 6q^{5} - 8q^{9} + O(q^{10}) \) \( 280q + 6q^{5} - 8q^{9} - 4q^{21} - 2q^{25} + 12q^{29} - 12q^{41} - 10q^{45} - 120q^{49} + 4q^{61} - 6q^{65} - 28q^{69} + 8q^{81} + 12q^{85} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2880, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2880, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2880, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1440, [\chi])\)\(^{\oplus 2}\)