# Properties

 Label 2880.2.bm Level $2880$ Weight $2$ Character orbit 2880.bm Rep. character $\chi_{2880}(1009,\cdot)$ Character field $\Q(\zeta_{4})$ Dimension $116$ Sturm bound $1152$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$2880 = 2^{6} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2880.bm (of order $$4$$ and degree $$2$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$80$$ Character field: $$\Q(i)$$ Sturm bound: $$1152$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(2880, [\chi])$$.

Total New Old
Modular forms 1216 124 1092
Cusp forms 1088 116 972
Eisenstein series 128 8 120

## Trace form

 $$116q + 2q^{5} + O(q^{10})$$ $$116q + 2q^{5} - 4q^{11} - 4q^{19} + 4q^{29} - 16q^{31} + 84q^{49} - 20q^{59} + 12q^{61} - 4q^{65} - 16q^{79} + 8q^{85} + 16q^{91} - 28q^{95} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(2880, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

## Decomposition of $$S_{2}^{\mathrm{old}}(2880, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(2880, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(80, [\chi])$$$$^{\oplus 9}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(240, [\chi])$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(320, [\chi])$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(720, [\chi])$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(960, [\chi])$$$$^{\oplus 2}$$