Newspace parameters
Level: | \( N \) | \(=\) | \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2880.bl (of order \(4\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(22.9969157821\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | no (minimal twist has level 720) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
431.1 | 0 | 0 | 0 | −0.707107 | − | 0.707107i | 0 | −4.49261 | 0 | 0 | 0 | ||||||||||||||||
431.2 | 0 | 0 | 0 | −0.707107 | − | 0.707107i | 0 | 0.750417 | 0 | 0 | 0 | ||||||||||||||||
431.3 | 0 | 0 | 0 | −0.707107 | − | 0.707107i | 0 | 0.527405 | 0 | 0 | 0 | ||||||||||||||||
431.4 | 0 | 0 | 0 | −0.707107 | − | 0.707107i | 0 | −1.61527 | 0 | 0 | 0 | ||||||||||||||||
431.5 | 0 | 0 | 0 | −0.707107 | − | 0.707107i | 0 | 2.69352 | 0 | 0 | 0 | ||||||||||||||||
431.6 | 0 | 0 | 0 | −0.707107 | − | 0.707107i | 0 | 4.13654 | 0 | 0 | 0 | ||||||||||||||||
431.7 | 0 | 0 | 0 | 0.707107 | + | 0.707107i | 0 | −4.49261 | 0 | 0 | 0 | ||||||||||||||||
431.8 | 0 | 0 | 0 | 0.707107 | + | 0.707107i | 0 | 4.13654 | 0 | 0 | 0 | ||||||||||||||||
431.9 | 0 | 0 | 0 | 0.707107 | + | 0.707107i | 0 | 0.527405 | 0 | 0 | 0 | ||||||||||||||||
431.10 | 0 | 0 | 0 | 0.707107 | + | 0.707107i | 0 | −1.61527 | 0 | 0 | 0 | ||||||||||||||||
431.11 | 0 | 0 | 0 | 0.707107 | + | 0.707107i | 0 | 0.750417 | 0 | 0 | 0 | ||||||||||||||||
431.12 | 0 | 0 | 0 | 0.707107 | + | 0.707107i | 0 | 2.69352 | 0 | 0 | 0 | ||||||||||||||||
1871.1 | 0 | 0 | 0 | −0.707107 | + | 0.707107i | 0 | −4.49261 | 0 | 0 | 0 | ||||||||||||||||
1871.2 | 0 | 0 | 0 | −0.707107 | + | 0.707107i | 0 | 0.750417 | 0 | 0 | 0 | ||||||||||||||||
1871.3 | 0 | 0 | 0 | −0.707107 | + | 0.707107i | 0 | 0.527405 | 0 | 0 | 0 | ||||||||||||||||
1871.4 | 0 | 0 | 0 | −0.707107 | + | 0.707107i | 0 | −1.61527 | 0 | 0 | 0 | ||||||||||||||||
1871.5 | 0 | 0 | 0 | −0.707107 | + | 0.707107i | 0 | 2.69352 | 0 | 0 | 0 | ||||||||||||||||
1871.6 | 0 | 0 | 0 | −0.707107 | + | 0.707107i | 0 | 4.13654 | 0 | 0 | 0 | ||||||||||||||||
1871.7 | 0 | 0 | 0 | 0.707107 | − | 0.707107i | 0 | −4.49261 | 0 | 0 | 0 | ||||||||||||||||
1871.8 | 0 | 0 | 0 | 0.707107 | − | 0.707107i | 0 | 4.13654 | 0 | 0 | 0 | ||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
16.f | odd | 4 | 1 | inner |
48.k | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2880.2.bl.b | 24 | |
3.b | odd | 2 | 1 | inner | 2880.2.bl.b | 24 | |
4.b | odd | 2 | 1 | 720.2.bl.b | ✓ | 24 | |
12.b | even | 2 | 1 | 720.2.bl.b | ✓ | 24 | |
16.e | even | 4 | 1 | 720.2.bl.b | ✓ | 24 | |
16.f | odd | 4 | 1 | inner | 2880.2.bl.b | 24 | |
48.i | odd | 4 | 1 | 720.2.bl.b | ✓ | 24 | |
48.k | even | 4 | 1 | inner | 2880.2.bl.b | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
720.2.bl.b | ✓ | 24 | 4.b | odd | 2 | 1 | |
720.2.bl.b | ✓ | 24 | 12.b | even | 2 | 1 | |
720.2.bl.b | ✓ | 24 | 16.e | even | 4 | 1 | |
720.2.bl.b | ✓ | 24 | 48.i | odd | 4 | 1 | |
2880.2.bl.b | 24 | 1.a | even | 1 | 1 | trivial | |
2880.2.bl.b | 24 | 3.b | odd | 2 | 1 | inner | |
2880.2.bl.b | 24 | 16.f | odd | 4 | 1 | inner | |
2880.2.bl.b | 24 | 48.k | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{6} - 2 T_{7}^{5} - 22 T_{7}^{4} + 48 T_{7}^{3} + 48 T_{7}^{2} - 96 T_{7} + 32 \) acting on \(S_{2}^{\mathrm{new}}(2880, [\chi])\).