# Properties

 Label 2880.2.bl.b Level $2880$ Weight $2$ Character orbit 2880.bl Analytic conductor $22.997$ Analytic rank $0$ Dimension $24$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2880 = 2^{6} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2880.bl (of order $$4$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$22.9969157821$$ Analytic rank: $$0$$ Dimension: $$24$$ Relative dimension: $$12$$ over $$\Q(i)$$ Twist minimal: no (minimal twist has level 720) Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## $q$-expansion

The dimension is sufficiently large that we do not compute an algebraic $$q$$-expansion, but we have computed the trace expansion.

 $$\operatorname{Tr}(f)(q) =$$ $$24q + 8q^{7} + O(q^{10})$$ $$\operatorname{Tr}(f)(q) =$$ $$24q + 8q^{7} + 24q^{19} + 8q^{37} - 48q^{43} + 24q^{49} - 24q^{55} + 40q^{61} + 40q^{67} + 24q^{85} - 40q^{91} - 16q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
431.1 0 0 0 −0.707107 0.707107i 0 −4.49261 0 0 0
431.2 0 0 0 −0.707107 0.707107i 0 0.750417 0 0 0
431.3 0 0 0 −0.707107 0.707107i 0 0.527405 0 0 0
431.4 0 0 0 −0.707107 0.707107i 0 −1.61527 0 0 0
431.5 0 0 0 −0.707107 0.707107i 0 2.69352 0 0 0
431.6 0 0 0 −0.707107 0.707107i 0 4.13654 0 0 0
431.7 0 0 0 0.707107 + 0.707107i 0 −4.49261 0 0 0
431.8 0 0 0 0.707107 + 0.707107i 0 4.13654 0 0 0
431.9 0 0 0 0.707107 + 0.707107i 0 0.527405 0 0 0
431.10 0 0 0 0.707107 + 0.707107i 0 −1.61527 0 0 0
431.11 0 0 0 0.707107 + 0.707107i 0 0.750417 0 0 0
431.12 0 0 0 0.707107 + 0.707107i 0 2.69352 0 0 0
1871.1 0 0 0 −0.707107 + 0.707107i 0 −4.49261 0 0 0
1871.2 0 0 0 −0.707107 + 0.707107i 0 0.750417 0 0 0
1871.3 0 0 0 −0.707107 + 0.707107i 0 0.527405 0 0 0
1871.4 0 0 0 −0.707107 + 0.707107i 0 −1.61527 0 0 0
1871.5 0 0 0 −0.707107 + 0.707107i 0 2.69352 0 0 0
1871.6 0 0 0 −0.707107 + 0.707107i 0 4.13654 0 0 0
1871.7 0 0 0 0.707107 0.707107i 0 −4.49261 0 0 0
1871.8 0 0 0 0.707107 0.707107i 0 4.13654 0 0 0
See all 24 embeddings
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1871.12 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
16.f odd 4 1 inner
48.k even 4 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.bl.b 24
3.b odd 2 1 inner 2880.2.bl.b 24
4.b odd 2 1 720.2.bl.b 24
12.b even 2 1 720.2.bl.b 24
16.e even 4 1 720.2.bl.b 24
16.f odd 4 1 inner 2880.2.bl.b 24
48.i odd 4 1 720.2.bl.b 24
48.k even 4 1 inner 2880.2.bl.b 24

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
720.2.bl.b 24 4.b odd 2 1
720.2.bl.b 24 12.b even 2 1
720.2.bl.b 24 16.e even 4 1
720.2.bl.b 24 48.i odd 4 1
2880.2.bl.b 24 1.a even 1 1 trivial
2880.2.bl.b 24 3.b odd 2 1 inner
2880.2.bl.b 24 16.f odd 4 1 inner
2880.2.bl.b 24 48.k even 4 1 inner

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{7}^{6} - 2 T_{7}^{5} - 22 T_{7}^{4} + 48 T_{7}^{3} + 48 T_{7}^{2} - 96 T_{7} + 32$$ acting on $$S_{2}^{\mathrm{new}}(2880, [\chi])$$.