Properties

Label 2880.2.bg
Level $2880$
Weight $2$
Character orbit 2880.bg
Rep. character $\chi_{2880}(17,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $96$
Newform subspaces $1$
Sturm bound $1152$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.bg (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 240 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(1152\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2880, [\chi])\).

Total New Old
Modular forms 1216 96 1120
Cusp forms 1088 96 992
Eisenstein series 128 0 128

Trace form

\( 96q + O(q^{10}) \) \( 96q + 16q^{19} + 32q^{61} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2880, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
2880.2.bg.a \(96\) \(22.997\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(2880, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2880, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(960, [\chi])\)\(^{\oplus 2}\)