Properties

Label 2880.2.a.w
Level $2880$
Weight $2$
Character orbit 2880.a
Self dual yes
Analytic conductor $22.997$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(22.9969157821\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 360)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{5} - 2 q^{7} + 2 q^{11} - 4 q^{13} - 2 q^{17} + 4 q^{19} - 8 q^{23} + q^{25} + 10 q^{29} - 4 q^{31} - 2 q^{35} - 8 q^{43} - 8 q^{47} - 3 q^{49} - 6 q^{53} + 2 q^{55} - 14 q^{59} + 14 q^{61} - 4 q^{65} - 4 q^{67} - 12 q^{71} + 6 q^{73} - 4 q^{77} + 12 q^{79} + 4 q^{83} - 2 q^{85} - 12 q^{89} + 8 q^{91} + 4 q^{95} - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 1.00000 0 −2.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.a.w 1
3.b odd 2 1 2880.2.a.e 1
4.b odd 2 1 2880.2.a.bd 1
8.b even 2 1 720.2.a.a 1
8.d odd 2 1 360.2.a.c 1
12.b even 2 1 2880.2.a.n 1
24.f even 2 1 360.2.a.d yes 1
24.h odd 2 1 720.2.a.i 1
40.e odd 2 1 1800.2.a.i 1
40.f even 2 1 3600.2.a.bd 1
40.i odd 4 2 3600.2.f.g 2
40.k even 4 2 1800.2.f.h 2
72.l even 6 2 3240.2.q.d 2
72.p odd 6 2 3240.2.q.n 2
120.i odd 2 1 3600.2.a.bh 1
120.m even 2 1 1800.2.a.f 1
120.q odd 4 2 1800.2.f.d 2
120.w even 4 2 3600.2.f.q 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.a.c 1 8.d odd 2 1
360.2.a.d yes 1 24.f even 2 1
720.2.a.a 1 8.b even 2 1
720.2.a.i 1 24.h odd 2 1
1800.2.a.f 1 120.m even 2 1
1800.2.a.i 1 40.e odd 2 1
1800.2.f.d 2 120.q odd 4 2
1800.2.f.h 2 40.k even 4 2
2880.2.a.e 1 3.b odd 2 1
2880.2.a.n 1 12.b even 2 1
2880.2.a.w 1 1.a even 1 1 trivial
2880.2.a.bd 1 4.b odd 2 1
3240.2.q.d 2 72.l even 6 2
3240.2.q.n 2 72.p odd 6 2
3600.2.a.bd 1 40.f even 2 1
3600.2.a.bh 1 120.i odd 2 1
3600.2.f.g 2 40.i odd 4 2
3600.2.f.q 2 120.w even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2880))\):

\( T_{7} + 2 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{13} + 4 \) Copy content Toggle raw display
\( T_{17} + 2 \) Copy content Toggle raw display
\( T_{19} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T - 2 \) Copy content Toggle raw display
$13$ \( T + 4 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T + 8 \) Copy content Toggle raw display
$29$ \( T - 10 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 8 \) Copy content Toggle raw display
$47$ \( T + 8 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T + 14 \) Copy content Toggle raw display
$61$ \( T - 14 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T + 12 \) Copy content Toggle raw display
$73$ \( T - 6 \) Copy content Toggle raw display
$79$ \( T - 12 \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T + 12 \) Copy content Toggle raw display
$97$ \( T + 14 \) Copy content Toggle raw display
show more
show less