Properties

Label 2880.2.a.u
Level $2880$
Weight $2$
Character orbit 2880.a
Self dual yes
Analytic conductor $22.997$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(22.9969157821\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{5} - 2q^{7} + O(q^{10}) \) \( q + q^{5} - 2q^{7} - 6q^{11} + 4q^{13} + 6q^{17} - 4q^{19} + q^{25} - 6q^{29} + 4q^{31} - 2q^{35} - 8q^{37} + 8q^{43} - 3q^{49} - 6q^{53} - 6q^{55} - 6q^{59} - 2q^{61} + 4q^{65} - 4q^{67} - 12q^{71} - 10q^{73} + 12q^{77} + 4q^{79} - 12q^{83} + 6q^{85} - 12q^{89} - 8q^{91} - 4q^{95} + 2q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 1.00000 0 −2.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.a.u 1
3.b odd 2 1 2880.2.a.h 1
4.b odd 2 1 2880.2.a.bf 1
8.b even 2 1 720.2.a.b 1
8.d odd 2 1 90.2.a.b yes 1
12.b even 2 1 2880.2.a.k 1
24.f even 2 1 90.2.a.a 1
24.h odd 2 1 720.2.a.g 1
40.e odd 2 1 450.2.a.a 1
40.f even 2 1 3600.2.a.bj 1
40.i odd 4 2 3600.2.f.u 2
40.k even 4 2 450.2.c.a 2
56.e even 2 1 4410.2.a.bf 1
72.l even 6 2 810.2.e.h 2
72.p odd 6 2 810.2.e.e 2
120.i odd 2 1 3600.2.a.ba 1
120.m even 2 1 450.2.a.e 1
120.q odd 4 2 450.2.c.d 2
120.w even 4 2 3600.2.f.a 2
168.e odd 2 1 4410.2.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.2.a.a 1 24.f even 2 1
90.2.a.b yes 1 8.d odd 2 1
450.2.a.a 1 40.e odd 2 1
450.2.a.e 1 120.m even 2 1
450.2.c.a 2 40.k even 4 2
450.2.c.d 2 120.q odd 4 2
720.2.a.b 1 8.b even 2 1
720.2.a.g 1 24.h odd 2 1
810.2.e.e 2 72.p odd 6 2
810.2.e.h 2 72.l even 6 2
2880.2.a.h 1 3.b odd 2 1
2880.2.a.k 1 12.b even 2 1
2880.2.a.u 1 1.a even 1 1 trivial
2880.2.a.bf 1 4.b odd 2 1
3600.2.a.ba 1 120.i odd 2 1
3600.2.a.bj 1 40.f even 2 1
3600.2.f.a 2 120.w even 4 2
3600.2.f.u 2 40.i odd 4 2
4410.2.a.k 1 168.e odd 2 1
4410.2.a.bf 1 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2880))\):

\( T_{7} + 2 \)
\( T_{11} + 6 \)
\( T_{13} - 4 \)
\( T_{17} - 6 \)
\( T_{19} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( T \)
$5$ \( -1 + T \)
$7$ \( 2 + T \)
$11$ \( 6 + T \)
$13$ \( -4 + T \)
$17$ \( -6 + T \)
$19$ \( 4 + T \)
$23$ \( T \)
$29$ \( 6 + T \)
$31$ \( -4 + T \)
$37$ \( 8 + T \)
$41$ \( T \)
$43$ \( -8 + T \)
$47$ \( T \)
$53$ \( 6 + T \)
$59$ \( 6 + T \)
$61$ \( 2 + T \)
$67$ \( 4 + T \)
$71$ \( 12 + T \)
$73$ \( 10 + T \)
$79$ \( -4 + T \)
$83$ \( 12 + T \)
$89$ \( 12 + T \)
$97$ \( -2 + T \)
show more
show less