Properties

Label 2880.2.a.j
Level $2880$
Weight $2$
Character orbit 2880.a
Self dual yes
Analytic conductor $22.997$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(22.9969157821\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{5}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{5} + 4 q^{11} - 2 q^{13} + 2 q^{17} - 8 q^{19} - 4 q^{23} + q^{25} - 6 q^{29} - 2 q^{37} + 6 q^{41} - 4 q^{43} + 12 q^{47} - 7 q^{49} - 6 q^{53} - 4 q^{55} + 12 q^{59} - 14 q^{61} + 2 q^{65} + 12 q^{67} + 2 q^{73} - 8 q^{79} - 4 q^{83} - 2 q^{85} - 2 q^{89} + 8 q^{95} - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −1.00000 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.a.j 1
3.b odd 2 1 960.2.a.f 1
4.b odd 2 1 2880.2.a.i 1
8.b even 2 1 1440.2.a.j 1
8.d odd 2 1 1440.2.a.k 1
12.b even 2 1 960.2.a.o 1
15.d odd 2 1 4800.2.a.ca 1
15.e even 4 2 4800.2.f.j 2
24.f even 2 1 480.2.a.b 1
24.h odd 2 1 480.2.a.e yes 1
40.e odd 2 1 7200.2.a.bg 1
40.f even 2 1 7200.2.a.u 1
40.i odd 4 2 7200.2.f.b 2
40.k even 4 2 7200.2.f.bb 2
48.i odd 4 2 3840.2.k.k 2
48.k even 4 2 3840.2.k.p 2
60.h even 2 1 4800.2.a.u 1
60.l odd 4 2 4800.2.f.ba 2
120.i odd 2 1 2400.2.a.j 1
120.m even 2 1 2400.2.a.y 1
120.q odd 4 2 2400.2.f.e 2
120.w even 4 2 2400.2.f.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.2.a.b 1 24.f even 2 1
480.2.a.e yes 1 24.h odd 2 1
960.2.a.f 1 3.b odd 2 1
960.2.a.o 1 12.b even 2 1
1440.2.a.j 1 8.b even 2 1
1440.2.a.k 1 8.d odd 2 1
2400.2.a.j 1 120.i odd 2 1
2400.2.a.y 1 120.m even 2 1
2400.2.f.e 2 120.q odd 4 2
2400.2.f.n 2 120.w even 4 2
2880.2.a.i 1 4.b odd 2 1
2880.2.a.j 1 1.a even 1 1 trivial
3840.2.k.k 2 48.i odd 4 2
3840.2.k.p 2 48.k even 4 2
4800.2.a.u 1 60.h even 2 1
4800.2.a.ca 1 15.d odd 2 1
4800.2.f.j 2 15.e even 4 2
4800.2.f.ba 2 60.l odd 4 2
7200.2.a.u 1 40.f even 2 1
7200.2.a.bg 1 40.e odd 2 1
7200.2.f.b 2 40.i odd 4 2
7200.2.f.bb 2 40.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2880))\):

\( T_{7} \) Copy content Toggle raw display
\( T_{11} - 4 \) Copy content Toggle raw display
\( T_{13} + 2 \) Copy content Toggle raw display
\( T_{17} - 2 \) Copy content Toggle raw display
\( T_{19} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 4 \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T + 8 \) Copy content Toggle raw display
$23$ \( T + 4 \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T - 12 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T - 12 \) Copy content Toggle raw display
$61$ \( T + 14 \) Copy content Toggle raw display
$67$ \( T - 12 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T + 4 \) Copy content Toggle raw display
$89$ \( T + 2 \) Copy content Toggle raw display
$97$ \( T + 14 \) Copy content Toggle raw display
show more
show less