Properties

Label 2880.2.a.d
Level 2880
Weight 2
Character orbit 2880.a
Self dual yes
Analytic conductor 22.997
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2880.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(22.9969157821\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{5} - 2q^{7} + O(q^{10}) \) \( q - q^{5} - 2q^{7} - 4q^{11} + 6q^{13} - 2q^{17} - 8q^{19} + 6q^{23} + q^{25} - 2q^{29} + 4q^{31} + 2q^{35} - 2q^{37} + 10q^{41} + 2q^{43} + 2q^{47} - 3q^{49} + 2q^{53} + 4q^{55} - 2q^{61} - 6q^{65} + 6q^{67} + 12q^{71} + 10q^{73} + 8q^{77} - 8q^{79} - 10q^{83} + 2q^{85} + 6q^{89} - 12q^{91} + 8q^{95} + 10q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −1.00000 0 −2.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.a.d 1
3.b odd 2 1 320.2.a.e 1
4.b odd 2 1 2880.2.a.o 1
8.b even 2 1 1440.2.a.i 1
8.d odd 2 1 1440.2.a.l 1
12.b even 2 1 320.2.a.b 1
15.d odd 2 1 1600.2.a.e 1
15.e even 4 2 1600.2.c.f 2
24.f even 2 1 160.2.a.b yes 1
24.h odd 2 1 160.2.a.a 1
40.e odd 2 1 7200.2.a.l 1
40.f even 2 1 7200.2.a.bp 1
40.i odd 4 2 7200.2.f.w 2
40.k even 4 2 7200.2.f.g 2
48.i odd 4 2 1280.2.d.h 2
48.k even 4 2 1280.2.d.b 2
60.h even 2 1 1600.2.a.t 1
60.l odd 4 2 1600.2.c.c 2
120.i odd 2 1 800.2.a.i 1
120.m even 2 1 800.2.a.a 1
120.q odd 4 2 800.2.c.b 2
120.w even 4 2 800.2.c.a 2
168.e odd 2 1 7840.2.a.e 1
168.i even 2 1 7840.2.a.w 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.2.a.a 1 24.h odd 2 1
160.2.a.b yes 1 24.f even 2 1
320.2.a.b 1 12.b even 2 1
320.2.a.e 1 3.b odd 2 1
800.2.a.a 1 120.m even 2 1
800.2.a.i 1 120.i odd 2 1
800.2.c.a 2 120.w even 4 2
800.2.c.b 2 120.q odd 4 2
1280.2.d.b 2 48.k even 4 2
1280.2.d.h 2 48.i odd 4 2
1440.2.a.i 1 8.b even 2 1
1440.2.a.l 1 8.d odd 2 1
1600.2.a.e 1 15.d odd 2 1
1600.2.a.t 1 60.h even 2 1
1600.2.c.c 2 60.l odd 4 2
1600.2.c.f 2 15.e even 4 2
2880.2.a.d 1 1.a even 1 1 trivial
2880.2.a.o 1 4.b odd 2 1
7200.2.a.l 1 40.e odd 2 1
7200.2.a.bp 1 40.f even 2 1
7200.2.f.g 2 40.k even 4 2
7200.2.f.w 2 40.i odd 4 2
7840.2.a.e 1 168.e odd 2 1
7840.2.a.w 1 168.i even 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2880))\):

\( T_{7} + 2 \)
\( T_{11} + 4 \)
\( T_{13} - 6 \)
\( T_{17} + 2 \)
\( T_{19} + 8 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( \)
$3$ \( \)
$5$ \( 1 + T \)
$7$ \( 1 + 2 T + 7 T^{2} \)
$11$ \( 1 + 4 T + 11 T^{2} \)
$13$ \( 1 - 6 T + 13 T^{2} \)
$17$ \( 1 + 2 T + 17 T^{2} \)
$19$ \( 1 + 8 T + 19 T^{2} \)
$23$ \( 1 - 6 T + 23 T^{2} \)
$29$ \( 1 + 2 T + 29 T^{2} \)
$31$ \( 1 - 4 T + 31 T^{2} \)
$37$ \( 1 + 2 T + 37 T^{2} \)
$41$ \( 1 - 10 T + 41 T^{2} \)
$43$ \( 1 - 2 T + 43 T^{2} \)
$47$ \( 1 - 2 T + 47 T^{2} \)
$53$ \( 1 - 2 T + 53 T^{2} \)
$59$ \( 1 + 59 T^{2} \)
$61$ \( 1 + 2 T + 61 T^{2} \)
$67$ \( 1 - 6 T + 67 T^{2} \)
$71$ \( 1 - 12 T + 71 T^{2} \)
$73$ \( 1 - 10 T + 73 T^{2} \)
$79$ \( 1 + 8 T + 79 T^{2} \)
$83$ \( 1 + 10 T + 83 T^{2} \)
$89$ \( 1 - 6 T + 89 T^{2} \)
$97$ \( 1 - 10 T + 97 T^{2} \)
show more
show less