Properties

Label 2880.1.r.a
Level $2880$
Weight $1$
Character orbit 2880.r
Analytic conductor $1.437$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2880,1,Mod(559,2880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2880, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2880.559");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2880.r (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.43730723638\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 720)
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.92160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{8}^{3} q^{5} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{8}^{3} q^{5} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{17} + ( - \zeta_{8}^{2} - 1) q^{19} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{23} - \zeta_{8}^{2} q^{25} + 2 \zeta_{8}^{2} q^{31} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{47} + q^{49} + (\zeta_{8}^{2} - 1) q^{61} - 2 \zeta_{8}^{3} q^{83} + ( - \zeta_{8}^{2} - 1) q^{85} + (\zeta_{8}^{3} - \zeta_{8}) q^{95} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{19} + 4 q^{49} - 4 q^{61} - 4 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(-1\) \(1\) \(\zeta_{8}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
559.1
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
0 0 0 −0.707107 0.707107i 0 0 0 0 0
559.2 0 0 0 0.707107 + 0.707107i 0 0 0 0 0
1999.1 0 0 0 −0.707107 + 0.707107i 0 0 0 0 0
1999.2 0 0 0 0.707107 0.707107i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
16.f odd 4 1 inner
48.k even 4 1 inner
80.k odd 4 1 inner
240.t even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.1.r.a 4
3.b odd 2 1 inner 2880.1.r.a 4
4.b odd 2 1 720.1.r.a 4
5.b even 2 1 inner 2880.1.r.a 4
12.b even 2 1 720.1.r.a 4
15.d odd 2 1 CM 2880.1.r.a 4
16.e even 4 1 720.1.r.a 4
16.f odd 4 1 inner 2880.1.r.a 4
20.d odd 2 1 720.1.r.a 4
20.e even 4 2 3600.1.bo.a 4
48.i odd 4 1 720.1.r.a 4
48.k even 4 1 inner 2880.1.r.a 4
60.h even 2 1 720.1.r.a 4
60.l odd 4 2 3600.1.bo.a 4
80.i odd 4 1 3600.1.bo.a 4
80.k odd 4 1 inner 2880.1.r.a 4
80.q even 4 1 720.1.r.a 4
80.t odd 4 1 3600.1.bo.a 4
240.t even 4 1 inner 2880.1.r.a 4
240.bb even 4 1 3600.1.bo.a 4
240.bf even 4 1 3600.1.bo.a 4
240.bm odd 4 1 720.1.r.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
720.1.r.a 4 4.b odd 2 1
720.1.r.a 4 12.b even 2 1
720.1.r.a 4 16.e even 4 1
720.1.r.a 4 20.d odd 2 1
720.1.r.a 4 48.i odd 4 1
720.1.r.a 4 60.h even 2 1
720.1.r.a 4 80.q even 4 1
720.1.r.a 4 240.bm odd 4 1
2880.1.r.a 4 1.a even 1 1 trivial
2880.1.r.a 4 3.b odd 2 1 inner
2880.1.r.a 4 5.b even 2 1 inner
2880.1.r.a 4 15.d odd 2 1 CM
2880.1.r.a 4 16.f odd 4 1 inner
2880.1.r.a 4 48.k even 4 1 inner
2880.1.r.a 4 80.k odd 4 1 inner
2880.1.r.a 4 240.t even 4 1 inner
3600.1.bo.a 4 20.e even 4 2
3600.1.bo.a 4 60.l odd 4 2
3600.1.bo.a 4 80.i odd 4 1
3600.1.bo.a 4 80.t odd 4 1
3600.1.bo.a 4 240.bb even 4 1
3600.1.bo.a 4 240.bf even 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(2880, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 16 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less