Newspace parameters
Level: | \( N \) | \(=\) | \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2880.p (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.43730723638\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(D_{2}\) |
Projective field: | Galois closure of \(\Q(\sqrt{5}, \sqrt{-6})\) |
Artin image: | $D_4:C_2$ |
Artin field: | Galois closure of 8.0.19110297600.5 |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(641\) | \(901\) | \(2431\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2719.1 |
|
0 | 0 | 0 | − | 1.00000i | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||
2719.2 | 0 | 0 | 0 | 1.00000i | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | RM by \(\Q(\sqrt{5}) \) |
24.h | odd | 2 | 1 | CM by \(\Q(\sqrt{-6}) \) |
120.i | odd | 2 | 1 | CM by \(\Q(\sqrt{-30}) \) |
8.d | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
40.e | odd | 2 | 1 | inner |
60.h | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2880.1.p.b | yes | 2 |
3.b | odd | 2 | 1 | 2880.1.p.a | ✓ | 2 | |
4.b | odd | 2 | 1 | 2880.1.p.a | ✓ | 2 | |
5.b | even | 2 | 1 | RM | 2880.1.p.b | yes | 2 |
8.b | even | 2 | 1 | 2880.1.p.a | ✓ | 2 | |
8.d | odd | 2 | 1 | inner | 2880.1.p.b | yes | 2 |
12.b | even | 2 | 1 | inner | 2880.1.p.b | yes | 2 |
15.d | odd | 2 | 1 | 2880.1.p.a | ✓ | 2 | |
20.d | odd | 2 | 1 | 2880.1.p.a | ✓ | 2 | |
24.f | even | 2 | 1 | 2880.1.p.a | ✓ | 2 | |
24.h | odd | 2 | 1 | CM | 2880.1.p.b | yes | 2 |
40.e | odd | 2 | 1 | inner | 2880.1.p.b | yes | 2 |
40.f | even | 2 | 1 | 2880.1.p.a | ✓ | 2 | |
60.h | even | 2 | 1 | inner | 2880.1.p.b | yes | 2 |
120.i | odd | 2 | 1 | CM | 2880.1.p.b | yes | 2 |
120.m | even | 2 | 1 | 2880.1.p.a | ✓ | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2880.1.p.a | ✓ | 2 | 3.b | odd | 2 | 1 | |
2880.1.p.a | ✓ | 2 | 4.b | odd | 2 | 1 | |
2880.1.p.a | ✓ | 2 | 8.b | even | 2 | 1 | |
2880.1.p.a | ✓ | 2 | 15.d | odd | 2 | 1 | |
2880.1.p.a | ✓ | 2 | 20.d | odd | 2 | 1 | |
2880.1.p.a | ✓ | 2 | 24.f | even | 2 | 1 | |
2880.1.p.a | ✓ | 2 | 40.f | even | 2 | 1 | |
2880.1.p.a | ✓ | 2 | 120.m | even | 2 | 1 | |
2880.1.p.b | yes | 2 | 1.a | even | 1 | 1 | trivial |
2880.1.p.b | yes | 2 | 5.b | even | 2 | 1 | RM |
2880.1.p.b | yes | 2 | 8.d | odd | 2 | 1 | inner |
2880.1.p.b | yes | 2 | 12.b | even | 2 | 1 | inner |
2880.1.p.b | yes | 2 | 24.h | odd | 2 | 1 | CM |
2880.1.p.b | yes | 2 | 40.e | odd | 2 | 1 | inner |
2880.1.p.b | yes | 2 | 60.h | even | 2 | 1 | inner |
2880.1.p.b | yes | 2 | 120.i | odd | 2 | 1 | CM |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{11} - 2 \)
acting on \(S_{1}^{\mathrm{new}}(2880, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} \)
$5$
\( T^{2} + 1 \)
$7$
\( T^{2} \)
$11$
\( (T - 2)^{2} \)
$13$
\( T^{2} \)
$17$
\( T^{2} \)
$19$
\( T^{2} \)
$23$
\( T^{2} \)
$29$
\( T^{2} + 4 \)
$31$
\( T^{2} + 4 \)
$37$
\( T^{2} \)
$41$
\( T^{2} \)
$43$
\( T^{2} \)
$47$
\( T^{2} \)
$53$
\( T^{2} \)
$59$
\( (T - 2)^{2} \)
$61$
\( T^{2} \)
$67$
\( T^{2} \)
$71$
\( T^{2} \)
$73$
\( T^{2} \)
$79$
\( T^{2} + 4 \)
$83$
\( T^{2} \)
$89$
\( T^{2} \)
$97$
\( T^{2} \)
show more
show less