Properties

Label 2880.1.j
Level $2880$
Weight $1$
Character orbit 2880.j
Rep. character $\chi_{2880}(1279,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $576$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2880.j (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(576\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2880, [\chi])\).

Total New Old
Modular forms 76 5 71
Cusp forms 28 3 25
Eisenstein series 48 2 46

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 3 0 0 0

Trace form

\( 3 q - q^{5} - q^{25} + 2 q^{29} + 2 q^{41} - 3 q^{49} + 6 q^{61} - 4 q^{85} - 2 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2880, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2880.1.j.a 2880.j 20.d $1$ $1.437$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \) \(\Q(\sqrt{5}) \) 80.1.h.a \(0\) \(0\) \(-1\) \(0\) \(q-q^{5}+q^{25}+2q^{29}+2q^{41}-q^{49}+\cdots\)
2880.1.j.b 2880.j 20.d $2$ $1.437$ \(\Q(\sqrt{-1}) \) $D_{2}$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-15}) \) \(\Q(\sqrt{15}) \) 180.1.f.a \(0\) \(0\) \(0\) \(0\) \(q-i q^{5}-2 i q^{17}-q^{25}-q^{49}-2 i q^{53}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2880, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2880, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 3}\)