Properties

Label 2880.1.cd
Level $2880$
Weight $1$
Character orbit 2880.cd
Rep. character $\chi_{2880}(1409,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $8$
Newform subspaces $1$
Sturm bound $576$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2880.cd (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(576\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2880, [\chi])\).

Total New Old
Modular forms 72 16 56
Cusp forms 24 8 16
Eisenstein series 48 8 40

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + O(q^{10}) \) \( 8 q + 4 q^{21} + 4 q^{25} + 12 q^{29} + 8 q^{45} + 4 q^{49} - 4 q^{69} + 4 q^{81} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(2880, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2880.1.cd.a $8$ $1.437$ \(\Q(\zeta_{24})\) $D_{12}$ \(\Q(\sqrt{-5}) \) None \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{24}^{11}q^{3}+\zeta_{24}^{2}q^{5}+(-\zeta_{24}^{3}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2880, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2880, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(1440, [\chi])\)\(^{\oplus 2}\)