Properties

Label 288.6.a.l.1.2
Level $288$
Weight $6$
Character 288.1
Self dual yes
Analytic conductor $46.191$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [288,6,Mod(1,288)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("288.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(288, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 288.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-92,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.1905401061\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 32)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 288.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-46.0000 q^{5} +166.277 q^{7} +83.1384 q^{11} -42.0000 q^{13} -962.000 q^{17} +2078.46 q^{19} -3159.26 q^{23} -1009.00 q^{25} +2554.00 q^{29} -1995.32 q^{31} -7648.74 q^{35} +11950.0 q^{37} +5078.00 q^{41} +12553.9 q^{43} +12304.5 q^{47} +10841.0 q^{49} +19714.0 q^{53} -3824.37 q^{55} -8895.81 q^{59} +29318.0 q^{61} +1932.00 q^{65} -16877.1 q^{67} +80976.8 q^{71} +37914.0 q^{73} +13824.0 q^{77} -88791.9 q^{79} -39324.5 q^{83} +44252.0 q^{85} -13930.0 q^{89} -6983.63 q^{91} -95609.2 q^{95} +163602. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 92 q^{5} - 84 q^{13} - 1924 q^{17} - 2018 q^{25} + 5108 q^{29} + 23900 q^{37} + 10156 q^{41} + 21682 q^{49} + 39428 q^{53} + 58636 q^{61} + 3864 q^{65} + 75828 q^{73} + 27648 q^{77} + 88504 q^{85}+ \cdots + 327204 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −46.0000 −0.822873 −0.411437 0.911438i \(-0.634973\pi\)
−0.411437 + 0.911438i \(0.634973\pi\)
\(6\) 0 0
\(7\) 166.277 1.28259 0.641293 0.767296i \(-0.278398\pi\)
0.641293 + 0.767296i \(0.278398\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 83.1384 0.207167 0.103583 0.994621i \(-0.466969\pi\)
0.103583 + 0.994621i \(0.466969\pi\)
\(12\) 0 0
\(13\) −42.0000 −0.0689272 −0.0344636 0.999406i \(-0.510972\pi\)
−0.0344636 + 0.999406i \(0.510972\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −962.000 −0.807333 −0.403667 0.914906i \(-0.632264\pi\)
−0.403667 + 0.914906i \(0.632264\pi\)
\(18\) 0 0
\(19\) 2078.46 1.32086 0.660432 0.750886i \(-0.270373\pi\)
0.660432 + 0.750886i \(0.270373\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3159.26 −1.24528 −0.622638 0.782510i \(-0.713939\pi\)
−0.622638 + 0.782510i \(0.713939\pi\)
\(24\) 0 0
\(25\) −1009.00 −0.322880
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2554.00 0.563931 0.281965 0.959425i \(-0.409014\pi\)
0.281965 + 0.959425i \(0.409014\pi\)
\(30\) 0 0
\(31\) −1995.32 −0.372914 −0.186457 0.982463i \(-0.559701\pi\)
−0.186457 + 0.982463i \(0.559701\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −7648.74 −1.05541
\(36\) 0 0
\(37\) 11950.0 1.43504 0.717519 0.696539i \(-0.245278\pi\)
0.717519 + 0.696539i \(0.245278\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5078.00 0.471773 0.235886 0.971781i \(-0.424201\pi\)
0.235886 + 0.971781i \(0.424201\pi\)
\(42\) 0 0
\(43\) 12553.9 1.03540 0.517699 0.855563i \(-0.326789\pi\)
0.517699 + 0.855563i \(0.326789\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12304.5 0.812492 0.406246 0.913764i \(-0.366838\pi\)
0.406246 + 0.913764i \(0.366838\pi\)
\(48\) 0 0
\(49\) 10841.0 0.645029
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 19714.0 0.964018 0.482009 0.876166i \(-0.339907\pi\)
0.482009 + 0.876166i \(0.339907\pi\)
\(54\) 0 0
\(55\) −3824.37 −0.170472
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8895.81 −0.332702 −0.166351 0.986067i \(-0.553199\pi\)
−0.166351 + 0.986067i \(0.553199\pi\)
\(60\) 0 0
\(61\) 29318.0 1.00881 0.504405 0.863467i \(-0.331712\pi\)
0.504405 + 0.863467i \(0.331712\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1932.00 0.0567184
\(66\) 0 0
\(67\) −16877.1 −0.459315 −0.229658 0.973271i \(-0.573761\pi\)
−0.229658 + 0.973271i \(0.573761\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 80976.8 1.90640 0.953202 0.302334i \(-0.0977658\pi\)
0.953202 + 0.302334i \(0.0977658\pi\)
\(72\) 0 0
\(73\) 37914.0 0.832707 0.416354 0.909203i \(-0.363308\pi\)
0.416354 + 0.909203i \(0.363308\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13824.0 0.265709
\(78\) 0 0
\(79\) −88791.9 −1.60068 −0.800342 0.599544i \(-0.795349\pi\)
−0.800342 + 0.599544i \(0.795349\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −39324.5 −0.626567 −0.313284 0.949660i \(-0.601429\pi\)
−0.313284 + 0.949660i \(0.601429\pi\)
\(84\) 0 0
\(85\) 44252.0 0.664333
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −13930.0 −0.186413 −0.0932065 0.995647i \(-0.529712\pi\)
−0.0932065 + 0.995647i \(0.529712\pi\)
\(90\) 0 0
\(91\) −6983.63 −0.0884052
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −95609.2 −1.08690
\(96\) 0 0
\(97\) 163602. 1.76547 0.882733 0.469875i \(-0.155701\pi\)
0.882733 + 0.469875i \(0.155701\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 148562. 1.44912 0.724560 0.689212i \(-0.242043\pi\)
0.724560 + 0.689212i \(0.242043\pi\)
\(102\) 0 0
\(103\) 100598. 0.934317 0.467158 0.884174i \(-0.345278\pi\)
0.467158 + 0.884174i \(0.345278\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 194960. 1.64621 0.823105 0.567889i \(-0.192240\pi\)
0.823105 + 0.567889i \(0.192240\pi\)
\(108\) 0 0
\(109\) 123222. 0.993395 0.496698 0.867924i \(-0.334546\pi\)
0.496698 + 0.867924i \(0.334546\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 51278.0 0.377777 0.188888 0.981999i \(-0.439512\pi\)
0.188888 + 0.981999i \(0.439512\pi\)
\(114\) 0 0
\(115\) 145326. 1.02470
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −159958. −1.03547
\(120\) 0 0
\(121\) −154139. −0.957082
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 190164. 1.08856
\(126\) 0 0
\(127\) 148984. 0.819654 0.409827 0.912163i \(-0.365589\pi\)
0.409827 + 0.912163i \(0.365589\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −221231. −1.12634 −0.563169 0.826342i \(-0.690418\pi\)
−0.563169 + 0.826342i \(0.690418\pi\)
\(132\) 0 0
\(133\) 345600. 1.69412
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −241034. −1.09718 −0.548589 0.836092i \(-0.684835\pi\)
−0.548589 + 0.836092i \(0.684835\pi\)
\(138\) 0 0
\(139\) −169020. −0.741997 −0.370999 0.928633i \(-0.620985\pi\)
−0.370999 + 0.928633i \(0.620985\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3491.81 −0.0142794
\(144\) 0 0
\(145\) −117484. −0.464044
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 103810. 0.383066 0.191533 0.981486i \(-0.438654\pi\)
0.191533 + 0.981486i \(0.438654\pi\)
\(150\) 0 0
\(151\) 101595. 0.362602 0.181301 0.983428i \(-0.441969\pi\)
0.181301 + 0.983428i \(0.441969\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 91784.8 0.306861
\(156\) 0 0
\(157\) −234458. −0.759130 −0.379565 0.925165i \(-0.623926\pi\)
−0.379565 + 0.925165i \(0.623926\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −525312. −1.59718
\(162\) 0 0
\(163\) −388672. −1.14581 −0.572907 0.819620i \(-0.694185\pi\)
−0.572907 + 0.819620i \(0.694185\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −67342.1 −0.186851 −0.0934256 0.995626i \(-0.529782\pi\)
−0.0934256 + 0.995626i \(0.529782\pi\)
\(168\) 0 0
\(169\) −369529. −0.995249
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 206282. 0.524018 0.262009 0.965065i \(-0.415615\pi\)
0.262009 + 0.965065i \(0.415615\pi\)
\(174\) 0 0
\(175\) −167773. −0.414122
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 198119. 0.462161 0.231081 0.972935i \(-0.425774\pi\)
0.231081 + 0.972935i \(0.425774\pi\)
\(180\) 0 0
\(181\) −19746.0 −0.0448005 −0.0224002 0.999749i \(-0.507131\pi\)
−0.0224002 + 0.999749i \(0.507131\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −549700. −1.18085
\(186\) 0 0
\(187\) −79979.2 −0.167253
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 701023. 1.39043 0.695215 0.718802i \(-0.255309\pi\)
0.695215 + 0.718802i \(0.255309\pi\)
\(192\) 0 0
\(193\) −628622. −1.21478 −0.607388 0.794405i \(-0.707783\pi\)
−0.607388 + 0.794405i \(0.707783\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 334034. 0.613232 0.306616 0.951833i \(-0.400803\pi\)
0.306616 + 0.951833i \(0.400803\pi\)
\(198\) 0 0
\(199\) 318088. 0.569396 0.284698 0.958617i \(-0.408107\pi\)
0.284698 + 0.958617i \(0.408107\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 424671. 0.723290
\(204\) 0 0
\(205\) −233588. −0.388209
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 172800. 0.273639
\(210\) 0 0
\(211\) 736357. 1.13863 0.569315 0.822120i \(-0.307209\pi\)
0.569315 + 0.822120i \(0.307209\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −577480. −0.852002
\(216\) 0 0
\(217\) −331776. −0.478295
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 40404.0 0.0556472
\(222\) 0 0
\(223\) −1.31226e6 −1.76708 −0.883541 0.468354i \(-0.844847\pi\)
−0.883541 + 0.468354i \(0.844847\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −344276. −0.443448 −0.221724 0.975109i \(-0.571168\pi\)
−0.221724 + 0.975109i \(0.571168\pi\)
\(228\) 0 0
\(229\) −664626. −0.837507 −0.418754 0.908100i \(-0.637533\pi\)
−0.418754 + 0.908100i \(0.637533\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.09433e6 −1.32056 −0.660281 0.751019i \(-0.729563\pi\)
−0.660281 + 0.751019i \(0.729563\pi\)
\(234\) 0 0
\(235\) −566006. −0.668577
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 596269. 0.675223 0.337612 0.941285i \(-0.390381\pi\)
0.337612 + 0.941285i \(0.390381\pi\)
\(240\) 0 0
\(241\) −64734.0 −0.0717943 −0.0358971 0.999355i \(-0.511429\pi\)
−0.0358971 + 0.999355i \(0.511429\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −498686. −0.530777
\(246\) 0 0
\(247\) −87295.4 −0.0910435
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.29521e6 −1.29765 −0.648824 0.760938i \(-0.724739\pi\)
−0.648824 + 0.760938i \(0.724739\pi\)
\(252\) 0 0
\(253\) −262656. −0.257980
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −52226.0 −0.0493235 −0.0246618 0.999696i \(-0.507851\pi\)
−0.0246618 + 0.999696i \(0.507851\pi\)
\(258\) 0 0
\(259\) 1.98701e6 1.84056
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.17342e6 −1.04607 −0.523037 0.852310i \(-0.675201\pi\)
−0.523037 + 0.852310i \(0.675201\pi\)
\(264\) 0 0
\(265\) −906844. −0.793264
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 359498. 0.302912 0.151456 0.988464i \(-0.451604\pi\)
0.151456 + 0.988464i \(0.451604\pi\)
\(270\) 0 0
\(271\) 1.00331e6 0.829877 0.414939 0.909849i \(-0.363803\pi\)
0.414939 + 0.909849i \(0.363803\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −83886.7 −0.0668900
\(276\) 0 0
\(277\) −638370. −0.499888 −0.249944 0.968260i \(-0.580412\pi\)
−0.249944 + 0.968260i \(0.580412\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 112790. 0.0852128 0.0426064 0.999092i \(-0.486434\pi\)
0.0426064 + 0.999092i \(0.486434\pi\)
\(282\) 0 0
\(283\) −487939. −0.362160 −0.181080 0.983468i \(-0.557959\pi\)
−0.181080 + 0.983468i \(0.557959\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 844354. 0.605090
\(288\) 0 0
\(289\) −494413. −0.348213
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −990350. −0.673938 −0.336969 0.941516i \(-0.609402\pi\)
−0.336969 + 0.941516i \(0.609402\pi\)
\(294\) 0 0
\(295\) 409207. 0.273772
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 132689. 0.0858335
\(300\) 0 0
\(301\) 2.08742e6 1.32799
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.34863e6 −0.830123
\(306\) 0 0
\(307\) 340618. 0.206263 0.103132 0.994668i \(-0.467114\pi\)
0.103132 + 0.994668i \(0.467114\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.41418e6 0.829097 0.414548 0.910027i \(-0.363940\pi\)
0.414548 + 0.910027i \(0.363940\pi\)
\(312\) 0 0
\(313\) 940154. 0.542423 0.271212 0.962520i \(-0.412576\pi\)
0.271212 + 0.962520i \(0.412576\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.42825e6 1.35720 0.678602 0.734506i \(-0.262586\pi\)
0.678602 + 0.734506i \(0.262586\pi\)
\(318\) 0 0
\(319\) 212336. 0.116828
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.99948e6 −1.06638
\(324\) 0 0
\(325\) 42378.0 0.0222552
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.04595e6 1.04209
\(330\) 0 0
\(331\) −762296. −0.382432 −0.191216 0.981548i \(-0.561243\pi\)
−0.191216 + 0.981548i \(0.561243\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 776347. 0.377958
\(336\) 0 0
\(337\) 2.97506e6 1.42699 0.713495 0.700661i \(-0.247111\pi\)
0.713495 + 0.700661i \(0.247111\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −165888. −0.0772554
\(342\) 0 0
\(343\) −992008. −0.455281
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.91159e6 1.29810 0.649048 0.760748i \(-0.275167\pi\)
0.649048 + 0.760748i \(0.275167\pi\)
\(348\) 0 0
\(349\) 1.60641e6 0.705979 0.352989 0.935627i \(-0.385165\pi\)
0.352989 + 0.935627i \(0.385165\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.22819e6 1.80600 0.903000 0.429641i \(-0.141360\pi\)
0.903000 + 0.429641i \(0.141360\pi\)
\(354\) 0 0
\(355\) −3.72493e6 −1.56873
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.07464e6 −0.849583 −0.424792 0.905291i \(-0.639653\pi\)
−0.424792 + 0.905291i \(0.639653\pi\)
\(360\) 0 0
\(361\) 1.84390e6 0.744680
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.74404e6 −0.685212
\(366\) 0 0
\(367\) −2.33087e6 −0.903343 −0.451672 0.892184i \(-0.649172\pi\)
−0.451672 + 0.892184i \(0.649172\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.27798e6 1.23644
\(372\) 0 0
\(373\) 1.50630e6 0.560583 0.280292 0.959915i \(-0.409569\pi\)
0.280292 + 0.959915i \(0.409569\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −107268. −0.0388702
\(378\) 0 0
\(379\) −843772. −0.301736 −0.150868 0.988554i \(-0.548207\pi\)
−0.150868 + 0.988554i \(0.548207\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.58360e6 −1.24831 −0.624155 0.781300i \(-0.714557\pi\)
−0.624155 + 0.781300i \(0.714557\pi\)
\(384\) 0 0
\(385\) −635904. −0.218645
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −786446. −0.263509 −0.131754 0.991282i \(-0.542061\pi\)
−0.131754 + 0.991282i \(0.542061\pi\)
\(390\) 0 0
\(391\) 3.03921e6 1.00535
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.08443e6 1.31716
\(396\) 0 0
\(397\) 1.16889e6 0.372217 0.186108 0.982529i \(-0.440412\pi\)
0.186108 + 0.982529i \(0.440412\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.58400e6 1.42359 0.711793 0.702390i \(-0.247884\pi\)
0.711793 + 0.702390i \(0.247884\pi\)
\(402\) 0 0
\(403\) 83803.5 0.0257039
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 993504. 0.297292
\(408\) 0 0
\(409\) 4.31356e6 1.27505 0.637526 0.770429i \(-0.279958\pi\)
0.637526 + 0.770429i \(0.279958\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.47917e6 −0.426719
\(414\) 0 0
\(415\) 1.80893e6 0.515585
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.63257e6 −1.01083 −0.505416 0.862876i \(-0.668661\pi\)
−0.505416 + 0.862876i \(0.668661\pi\)
\(420\) 0 0
\(421\) −5.01688e6 −1.37952 −0.689761 0.724037i \(-0.742284\pi\)
−0.689761 + 0.724037i \(0.742284\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 970658. 0.260672
\(426\) 0 0
\(427\) 4.87491e6 1.29389
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −189888. −0.0492385 −0.0246192 0.999697i \(-0.507837\pi\)
−0.0246192 + 0.999697i \(0.507837\pi\)
\(432\) 0 0
\(433\) 5.21687e6 1.33718 0.668590 0.743631i \(-0.266898\pi\)
0.668590 + 0.743631i \(0.266898\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.56640e6 −1.64484
\(438\) 0 0
\(439\) 3.36661e6 0.833741 0.416871 0.908966i \(-0.363127\pi\)
0.416871 + 0.908966i \(0.363127\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.42654e6 −1.07166 −0.535828 0.844327i \(-0.680000\pi\)
−0.535828 + 0.844327i \(0.680000\pi\)
\(444\) 0 0
\(445\) 640780. 0.153394
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −443506. −0.103821 −0.0519103 0.998652i \(-0.516531\pi\)
−0.0519103 + 0.998652i \(0.516531\pi\)
\(450\) 0 0
\(451\) 422177. 0.0977357
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 321247. 0.0727462
\(456\) 0 0
\(457\) 590538. 0.132269 0.0661344 0.997811i \(-0.478933\pi\)
0.0661344 + 0.997811i \(0.478933\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.79463e6 1.05076 0.525380 0.850868i \(-0.323923\pi\)
0.525380 + 0.850868i \(0.323923\pi\)
\(462\) 0 0
\(463\) −1.40038e6 −0.303595 −0.151798 0.988412i \(-0.548506\pi\)
−0.151798 + 0.988412i \(0.548506\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.31681e6 0.703766 0.351883 0.936044i \(-0.385542\pi\)
0.351883 + 0.936044i \(0.385542\pi\)
\(468\) 0 0
\(469\) −2.80627e6 −0.589112
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.04371e6 0.214500
\(474\) 0 0
\(475\) −2.09717e6 −0.426480
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.00360e6 −0.996424 −0.498212 0.867055i \(-0.666010\pi\)
−0.498212 + 0.867055i \(0.666010\pi\)
\(480\) 0 0
\(481\) −501900. −0.0989133
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.52569e6 −1.45275
\(486\) 0 0
\(487\) −5.90133e6 −1.12753 −0.563764 0.825936i \(-0.690647\pi\)
−0.563764 + 0.825936i \(0.690647\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.15480e6 −1.52654 −0.763272 0.646077i \(-0.776409\pi\)
−0.763272 + 0.646077i \(0.776409\pi\)
\(492\) 0 0
\(493\) −2.45695e6 −0.455280
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.34646e7 2.44513
\(498\) 0 0
\(499\) 470979. 0.0846741 0.0423370 0.999103i \(-0.486520\pi\)
0.0423370 + 0.999103i \(0.486520\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.23452e6 1.62740 0.813700 0.581285i \(-0.197450\pi\)
0.813700 + 0.581285i \(0.197450\pi\)
\(504\) 0 0
\(505\) −6.83385e6 −1.19244
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.95283e6 0.505177 0.252588 0.967574i \(-0.418718\pi\)
0.252588 + 0.967574i \(0.418718\pi\)
\(510\) 0 0
\(511\) 6.30422e6 1.06802
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.62749e6 −0.768824
\(516\) 0 0
\(517\) 1.02298e6 0.168321
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.04570e7 −1.68776 −0.843882 0.536529i \(-0.819735\pi\)
−0.843882 + 0.536529i \(0.819735\pi\)
\(522\) 0 0
\(523\) 5.77571e6 0.923318 0.461659 0.887058i \(-0.347254\pi\)
0.461659 + 0.887058i \(0.347254\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.91950e6 0.301066
\(528\) 0 0
\(529\) 3.54459e6 0.550714
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −213276. −0.0325180
\(534\) 0 0
\(535\) −8.96814e6 −1.35462
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 901304. 0.133629
\(540\) 0 0
\(541\) −3.86409e6 −0.567615 −0.283808 0.958881i \(-0.591598\pi\)
−0.283808 + 0.958881i \(0.591598\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5.66821e6 −0.817438
\(546\) 0 0
\(547\) −8.49633e6 −1.21412 −0.607062 0.794654i \(-0.707652\pi\)
−0.607062 + 0.794654i \(0.707652\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.30839e6 0.744876
\(552\) 0 0
\(553\) −1.47640e7 −2.05302
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.33253e6 −0.864848 −0.432424 0.901671i \(-0.642342\pi\)
−0.432424 + 0.901671i \(0.642342\pi\)
\(558\) 0 0
\(559\) −527264. −0.0713672
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.47605e6 1.12700 0.563498 0.826117i \(-0.309455\pi\)
0.563498 + 0.826117i \(0.309455\pi\)
\(564\) 0 0
\(565\) −2.35879e6 −0.310862
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.69279e6 −0.219191 −0.109596 0.993976i \(-0.534956\pi\)
−0.109596 + 0.993976i \(0.534956\pi\)
\(570\) 0 0
\(571\) 4.50901e6 0.578750 0.289375 0.957216i \(-0.406552\pi\)
0.289375 + 0.957216i \(0.406552\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.18769e6 0.402075
\(576\) 0 0
\(577\) −4.07577e6 −0.509648 −0.254824 0.966987i \(-0.582018\pi\)
−0.254824 + 0.966987i \(0.582018\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6.53875e6 −0.803627
\(582\) 0 0
\(583\) 1.63899e6 0.199712
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.15563e6 0.976928 0.488464 0.872584i \(-0.337557\pi\)
0.488464 + 0.872584i \(0.337557\pi\)
\(588\) 0 0
\(589\) −4.14720e6 −0.492569
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 528622. 0.0617317 0.0308659 0.999524i \(-0.490174\pi\)
0.0308659 + 0.999524i \(0.490174\pi\)
\(594\) 0 0
\(595\) 7.35808e6 0.852064
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.84381e6 −0.551595 −0.275797 0.961216i \(-0.588942\pi\)
−0.275797 + 0.961216i \(0.588942\pi\)
\(600\) 0 0
\(601\) −2.11804e6 −0.239193 −0.119596 0.992823i \(-0.538160\pi\)
−0.119596 + 0.992823i \(0.538160\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.09039e6 0.787557
\(606\) 0 0
\(607\) −6.93109e6 −0.763536 −0.381768 0.924258i \(-0.624685\pi\)
−0.381768 + 0.924258i \(0.624685\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −516789. −0.0560028
\(612\) 0 0
\(613\) −3.21599e6 −0.345671 −0.172836 0.984951i \(-0.555293\pi\)
−0.172836 + 0.984951i \(0.555293\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.46326e7 −1.54742 −0.773709 0.633541i \(-0.781601\pi\)
−0.773709 + 0.633541i \(0.781601\pi\)
\(618\) 0 0
\(619\) −2.42706e6 −0.254597 −0.127299 0.991864i \(-0.540631\pi\)
−0.127299 + 0.991864i \(0.540631\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.31624e6 −0.239091
\(624\) 0 0
\(625\) −5.59442e6 −0.572869
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.14959e7 −1.15855
\(630\) 0 0
\(631\) −1.62235e7 −1.62207 −0.811036 0.584996i \(-0.801096\pi\)
−0.811036 + 0.584996i \(0.801096\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.85327e6 −0.674471
\(636\) 0 0
\(637\) −455322. −0.0444601
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.22399e7 1.17662 0.588308 0.808637i \(-0.299794\pi\)
0.588308 + 0.808637i \(0.299794\pi\)
\(642\) 0 0
\(643\) −2.40461e6 −0.229360 −0.114680 0.993402i \(-0.536584\pi\)
−0.114680 + 0.993402i \(0.536584\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.39515e7 −1.31026 −0.655132 0.755514i \(-0.727387\pi\)
−0.655132 + 0.755514i \(0.727387\pi\)
\(648\) 0 0
\(649\) −739584. −0.0689248
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.59391e7 1.46279 0.731395 0.681954i \(-0.238870\pi\)
0.731395 + 0.681954i \(0.238870\pi\)
\(654\) 0 0
\(655\) 1.01766e7 0.926833
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.36470e6 0.301809 0.150905 0.988548i \(-0.451781\pi\)
0.150905 + 0.988548i \(0.451781\pi\)
\(660\) 0 0
\(661\) −8.51194e6 −0.757748 −0.378874 0.925448i \(-0.623689\pi\)
−0.378874 + 0.925448i \(0.623689\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.58976e7 −1.39405
\(666\) 0 0
\(667\) −8.06875e6 −0.702250
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.43745e6 0.208992
\(672\) 0 0
\(673\) 1.15169e7 0.980161 0.490080 0.871677i \(-0.336967\pi\)
0.490080 + 0.871677i \(0.336967\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.32692e7 1.95124 0.975618 0.219475i \(-0.0704346\pi\)
0.975618 + 0.219475i \(0.0704346\pi\)
\(678\) 0 0
\(679\) 2.72032e7 2.26436
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.90399e7 −1.56176 −0.780880 0.624682i \(-0.785229\pi\)
−0.780880 + 0.624682i \(0.785229\pi\)
\(684\) 0 0
\(685\) 1.10876e7 0.902838
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −827988. −0.0664471
\(690\) 0 0
\(691\) −7.15780e6 −0.570275 −0.285138 0.958487i \(-0.592039\pi\)
−0.285138 + 0.958487i \(0.592039\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.77494e6 0.610569
\(696\) 0 0
\(697\) −4.88504e6 −0.380878
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −8.77684e6 −0.674595 −0.337297 0.941398i \(-0.609513\pi\)
−0.337297 + 0.941398i \(0.609513\pi\)
\(702\) 0 0
\(703\) 2.48376e7 1.89549
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.47024e7 1.85862
\(708\) 0 0
\(709\) 8.08481e6 0.604024 0.302012 0.953304i \(-0.402342\pi\)
0.302012 + 0.953304i \(0.402342\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.30374e6 0.464381
\(714\) 0 0
\(715\) 160623. 0.0117502
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.42855e7 −1.03056 −0.515280 0.857022i \(-0.672312\pi\)
−0.515280 + 0.857022i \(0.672312\pi\)
\(720\) 0 0
\(721\) 1.67270e7 1.19834
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.57699e6 −0.182082
\(726\) 0 0
\(727\) −1.17227e7 −0.822605 −0.411302 0.911499i \(-0.634926\pi\)
−0.411302 + 0.911499i \(0.634926\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.20769e7 −0.835912
\(732\) 0 0
\(733\) 1.81661e7 1.24882 0.624412 0.781095i \(-0.285339\pi\)
0.624412 + 0.781095i \(0.285339\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.40314e6 −0.0951549
\(738\) 0 0
\(739\) 1.27312e7 0.857550 0.428775 0.903411i \(-0.358945\pi\)
0.428775 + 0.903411i \(0.358945\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.82988e6 −0.121605 −0.0608023 0.998150i \(-0.519366\pi\)
−0.0608023 + 0.998150i \(0.519366\pi\)
\(744\) 0 0
\(745\) −4.77526e6 −0.315215
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.24173e7 2.11141
\(750\) 0 0
\(751\) −5.64577e6 −0.365278 −0.182639 0.983180i \(-0.558464\pi\)
−0.182639 + 0.983180i \(0.558464\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.67338e6 −0.298376
\(756\) 0 0
\(757\) 139230. 0.00883066 0.00441533 0.999990i \(-0.498595\pi\)
0.00441533 + 0.999990i \(0.498595\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.36251e7 −0.852863 −0.426432 0.904520i \(-0.640230\pi\)
−0.426432 + 0.904520i \(0.640230\pi\)
\(762\) 0 0
\(763\) 2.04890e7 1.27412
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 373624. 0.0229322
\(768\) 0 0
\(769\) −1.06840e7 −0.651504 −0.325752 0.945455i \(-0.605618\pi\)
−0.325752 + 0.945455i \(0.605618\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −2.22367e7 −1.33851 −0.669255 0.743033i \(-0.733386\pi\)
−0.669255 + 0.743033i \(0.733386\pi\)
\(774\) 0 0
\(775\) 2.01328e6 0.120407
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.05544e7 0.623148
\(780\) 0 0
\(781\) 6.73229e6 0.394944
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.07851e7 0.624667
\(786\) 0 0
\(787\) −2.81333e7 −1.61914 −0.809569 0.587025i \(-0.800299\pi\)
−0.809569 + 0.587025i \(0.800299\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8.52635e6 0.484531
\(792\) 0 0
\(793\) −1.23136e6 −0.0695346
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.43450e7 1.35758 0.678789 0.734333i \(-0.262505\pi\)
0.678789 + 0.734333i \(0.262505\pi\)
\(798\) 0 0
\(799\) −1.18369e7 −0.655951
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.15211e6 0.172509
\(804\) 0 0
\(805\) 2.41644e7 1.31427
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.30810e7 −1.23989 −0.619945 0.784645i \(-0.712845\pi\)
−0.619945 + 0.784645i \(0.712845\pi\)
\(810\) 0 0
\(811\) −3.33586e7 −1.78096 −0.890482 0.455019i \(-0.849632\pi\)
−0.890482 + 0.455019i \(0.849632\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.78789e7 0.942860
\(816\) 0 0
\(817\) 2.60928e7 1.36762
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.03134e7 1.05178 0.525890 0.850553i \(-0.323732\pi\)
0.525890 + 0.850553i \(0.323732\pi\)
\(822\) 0 0
\(823\) −6.90531e6 −0.355372 −0.177686 0.984087i \(-0.556861\pi\)
−0.177686 + 0.984087i \(0.556861\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.12498e7 1.58885 0.794427 0.607360i \(-0.207771\pi\)
0.794427 + 0.607360i \(0.207771\pi\)
\(828\) 0 0
\(829\) 2.32015e7 1.17254 0.586272 0.810114i \(-0.300595\pi\)
0.586272 + 0.810114i \(0.300595\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.04290e7 −0.520753
\(834\) 0 0
\(835\) 3.09774e6 0.153755
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.91651e7 −1.43041 −0.715203 0.698917i \(-0.753666\pi\)
−0.715203 + 0.698917i \(0.753666\pi\)
\(840\) 0 0
\(841\) −1.39882e7 −0.681982
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.69983e7 0.818964
\(846\) 0 0
\(847\) −2.56298e7 −1.22754
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.77532e7 −1.78702
\(852\) 0 0
\(853\) −9.23146e6 −0.434408 −0.217204 0.976126i \(-0.569694\pi\)
−0.217204 + 0.976126i \(0.569694\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.34077e6 0.341421 0.170710 0.985321i \(-0.445394\pi\)
0.170710 + 0.985321i \(0.445394\pi\)
\(858\) 0 0
\(859\) 1.57274e7 0.727233 0.363616 0.931549i \(-0.381542\pi\)
0.363616 + 0.931549i \(0.381542\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −5.72990e6 −0.261891 −0.130945 0.991390i \(-0.541801\pi\)
−0.130945 + 0.991390i \(0.541801\pi\)
\(864\) 0 0
\(865\) −9.48897e6 −0.431200
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7.38202e6 −0.331608
\(870\) 0 0
\(871\) 708838. 0.0316593
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.16199e7 1.39618
\(876\) 0 0
\(877\) 3.57123e7 1.56790 0.783950 0.620823i \(-0.213202\pi\)
0.783950 + 0.620823i \(0.213202\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.77000e6 0.0768304 0.0384152 0.999262i \(-0.487769\pi\)
0.0384152 + 0.999262i \(0.487769\pi\)
\(882\) 0 0
\(883\) 2.70394e7 1.16706 0.583532 0.812090i \(-0.301670\pi\)
0.583532 + 0.812090i \(0.301670\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.07893e7 1.31399 0.656994 0.753896i \(-0.271828\pi\)
0.656994 + 0.753896i \(0.271828\pi\)
\(888\) 0 0
\(889\) 2.47726e7 1.05128
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.55744e7 1.07319
\(894\) 0 0
\(895\) −9.11347e6 −0.380300
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.09605e6 −0.210298
\(900\) 0 0
\(901\) −1.89649e7 −0.778284
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 908316. 0.0368651
\(906\) 0 0
\(907\) 1.94729e7 0.785983 0.392992 0.919542i \(-0.371440\pi\)
0.392992 + 0.919542i \(0.371440\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.44863e7 0.977522 0.488761 0.872418i \(-0.337449\pi\)
0.488761 + 0.872418i \(0.337449\pi\)
\(912\) 0 0
\(913\) −3.26938e6 −0.129804
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3.67857e7 −1.44463
\(918\) 0 0
\(919\) 2.05656e7 0.803254 0.401627 0.915803i \(-0.368445\pi\)
0.401627 + 0.915803i \(0.368445\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.40103e6 −0.131403
\(924\) 0 0
\(925\) −1.20576e7 −0.463345
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4.50171e7 1.71135 0.855674 0.517514i \(-0.173143\pi\)
0.855674 + 0.517514i \(0.173143\pi\)
\(930\) 0 0
\(931\) 2.25326e7 0.851995
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.67904e6 0.137628
\(936\) 0 0
\(937\) 2.31151e7 0.860097 0.430048 0.902806i \(-0.358496\pi\)
0.430048 + 0.902806i \(0.358496\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 664042. 0.0244468 0.0122234 0.999925i \(-0.496109\pi\)
0.0122234 + 0.999925i \(0.496109\pi\)
\(942\) 0 0
\(943\) −1.60427e7 −0.587488
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −5.17375e7 −1.87469 −0.937347 0.348398i \(-0.886726\pi\)
−0.937347 + 0.348398i \(0.886726\pi\)
\(948\) 0 0
\(949\) −1.59239e6 −0.0573962
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2.89030e7 −1.03089 −0.515444 0.856923i \(-0.672373\pi\)
−0.515444 + 0.856923i \(0.672373\pi\)
\(954\) 0 0
\(955\) −3.22471e7 −1.14415
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.00784e7 −1.40723
\(960\) 0 0
\(961\) −2.46478e7 −0.860935
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.89166e7 0.999607
\(966\) 0 0
\(967\) 2.36554e7 0.813512 0.406756 0.913537i \(-0.366660\pi\)
0.406756 + 0.913537i \(0.366660\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.15207e7 −1.07287 −0.536436 0.843941i \(-0.680230\pi\)
−0.536436 + 0.843941i \(0.680230\pi\)
\(972\) 0 0
\(973\) −2.81042e7 −0.951676
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4.82778e6 −0.161812 −0.0809060 0.996722i \(-0.525781\pi\)
−0.0809060 + 0.996722i \(0.525781\pi\)
\(978\) 0 0
\(979\) −1.15812e6 −0.0386186
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.81641e7 0.929636 0.464818 0.885406i \(-0.346120\pi\)
0.464818 + 0.885406i \(0.346120\pi\)
\(984\) 0 0
\(985\) −1.53656e7 −0.504612
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.96611e7 −1.28936
\(990\) 0 0
\(991\) 2.95301e7 0.955171 0.477585 0.878585i \(-0.341512\pi\)
0.477585 + 0.878585i \(0.341512\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.46320e7 −0.468540
\(996\) 0 0
\(997\) −5.16306e7 −1.64501 −0.822507 0.568756i \(-0.807425\pi\)
−0.822507 + 0.568756i \(0.807425\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.6.a.l.1.2 2
3.2 odd 2 32.6.a.d.1.1 2
4.3 odd 2 inner 288.6.a.l.1.1 2
8.3 odd 2 576.6.a.bp.1.1 2
8.5 even 2 576.6.a.bp.1.2 2
12.11 even 2 32.6.a.d.1.2 yes 2
15.2 even 4 800.6.c.d.449.3 4
15.8 even 4 800.6.c.d.449.1 4
15.14 odd 2 800.6.a.k.1.2 2
24.5 odd 2 64.6.a.h.1.2 2
24.11 even 2 64.6.a.h.1.1 2
48.5 odd 4 256.6.b.l.129.4 4
48.11 even 4 256.6.b.l.129.2 4
48.29 odd 4 256.6.b.l.129.1 4
48.35 even 4 256.6.b.l.129.3 4
60.23 odd 4 800.6.c.d.449.4 4
60.47 odd 4 800.6.c.d.449.2 4
60.59 even 2 800.6.a.k.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.6.a.d.1.1 2 3.2 odd 2
32.6.a.d.1.2 yes 2 12.11 even 2
64.6.a.h.1.1 2 24.11 even 2
64.6.a.h.1.2 2 24.5 odd 2
256.6.b.l.129.1 4 48.29 odd 4
256.6.b.l.129.2 4 48.11 even 4
256.6.b.l.129.3 4 48.35 even 4
256.6.b.l.129.4 4 48.5 odd 4
288.6.a.l.1.1 2 4.3 odd 2 inner
288.6.a.l.1.2 2 1.1 even 1 trivial
576.6.a.bp.1.1 2 8.3 odd 2
576.6.a.bp.1.2 2 8.5 even 2
800.6.a.k.1.1 2 60.59 even 2
800.6.a.k.1.2 2 15.14 odd 2
800.6.c.d.449.1 4 15.8 even 4
800.6.c.d.449.2 4 60.47 odd 4
800.6.c.d.449.3 4 15.2 even 4
800.6.c.d.449.4 4 60.23 odd 4