Defining parameters
| Level: | \( N \) | \(=\) | \( 288 = 2^{5} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 288.t (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(144\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(288, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 208 | 52 | 156 |
| Cusp forms | 176 | 44 | 132 |
| Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(288, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 288.3.t.a | $4$ | $7.847$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | \(\Q(\sqrt{-2}) \) | \(0\) | \(-2\) | \(0\) | \(0\) | \(q+(-\beta _{1}-\beta _{2}+\beta _{3})q^{3}+(7+2\beta _{1}-7\beta _{2}+\cdots)q^{9}+\cdots\) |
| 288.3.t.b | $40$ | $7.847$ | None | \(0\) | \(6\) | \(0\) | \(0\) | ||
Decomposition of \(S_{3}^{\mathrm{old}}(288, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(288, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 3}\)